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ABSTRACT the product of two components. A rapid fluctuation com-
A Generalized likelihood ratio test (GLRT) is derived for ponent so-called speckle which decorellation time is about

. , s 10ms and which can be decorrelated with the use of fre-
adaptive detection of range and Doppler distributed tasget o . )
The clutter is modelled as a Spherically Invariant Random?uency agility. And a slow fluctuation component so-called

Process (SIRP) and its texture component is range depende\ﬁﬁit;ﬁ st?litt Z)f('frg?tlésdmb;(‘f;rh eg)ungrfcrydae gciﬁ{)r/elatlon [8] timel an
(heterogeneous clutter). We suppose here that the speckle’yy "0 0ce here a detector which is designed for range
fg?gggggé;&vgggngst n.}?]tlrjg( ISHIT(%C())V\\IIVrIII %;?;’:;rg,gresdtéhsg%gd Doppler distributed targets in non-Gaussian clutter. R

timated are local texture values, the complex amplitudek an olving the target on the Doppler axis enables to reduce the

frequencies of all scattering centers. The proposed datect gﬂgg?g? paggzgnsli?jtitsetrr?t:ﬁtévétrt]arrzz‘t)sClt/ltc?r:os:ﬁf?eg%?sI
assumes priori knowledge on the spatial distribution of the 0 separate the target and clutter spectrum. This paper is or

target and has the precious property of Constant False Alarrg;anized as follows : in section 2, problem statement will be

Rate (CFAR) with the assumption of a known speckle cov ormulated and clutter and signal models will be described.

The GLRT will be derived in section 3, CFAR property and
false alarm probability will be discussed in section 4 arad se
1. INTRODUCTION tion 5 will be devoted to several results of the applicatién o
A High Range Resolution radar (HRR) can resolve a tar24" detector on synthetic data.
get into a number of scattering centers, depending on th

range extent of the target and the range resolution of the rae—z' PROBLEM STATEMENT AND SIGNAL MODEL

dar. The range resolution is proportional to the inverséef t We assume that the target is spatially distributed dver
emitted bandwidth [1]. Different waveform can be used torange cells. The detection problem can thus be formulated as
achieve a high range resolution via pulse compression teclfellows :
nigues. One may cite the chirp waveform which pulses are
broadband thanks to a linear frequency-modulation, and the

riance matrix or by the use of frequency agility.

HO . Zy =Cr, r=1...L

step frequency waveform that emits narrow band pulses cen- Hi @ zr=x+¢, r=1..1L (1)
tered on different frequencies to achieve a synthetic broagiherez, = (z(0),%(1),...,z (N—1)!. The observations are
band. supposed to be independent between each range celHgrhe

In the last few years, many results have been obtaineHypothesis corresponds to the only presence of clutter and

in radar detection with HRR. In particular, radar detectionthe H, hypothesis to the presence of clutter and target.
of distributed targets in white Gaussian noise [2], in Gaus-

sian disturbance of unknown covariance matrix [3][4] and2.1 Clutter subspace
in non-Gaussian disturbance [5][6]. All these contribngo
show that a properly designed detector enables significa%r
performances improvement which is based on several facl—
tors. Firstly, increasing the range resolution of the ragar '
duces the energy of the clutter in each range cell and s
condly, resolved scatterers introduce less fluctuation ma
unresolved point target.

However, in HRR mode, clutter statistics can’t be modely, ,jiyariate distribution of the clutter vector is givennzb-
led as Gaussian random process anymore due to the obsery;g—na”y to the texture by -
tion of spikes. The distribution is usually modelled as a eom '
pound Gaussian vector and more precisely, as a spherically ciM1c,
invariant random vector (SIRV) [7]. The clutter vector igth Pe [z (er[Tr) = (71, )N detM exp(—r—r) (2)

The clutterc, = /Trs; is modelled as a Spherically In-
iant Random Vector (SIRV) so that=%.4(0,M),r =

.L. s is commonly nhamedpecklecomponent, which co-
variance matrixM is here supposed to be known, estimated
Sr identity with the use of frequency agility., so-calledex-
ture, is a real positive random process. This representation
is widely used to model the radar clutter [8][7][5][9]. The



2.2 Signal subspace

The signal vector; = (% (0),%(1),...,% (N —1)) in
each range cell, is the sum of the contributionppfscatte-
rers so that :

Pr
x(n) =Y axexp(j@x(n),n=0...N~-1  (3)
k=1

Thus, the signal in each range cell can be expressed with ma-

trix formulation as :
xr = Erar (4)

wherea, = (ar1,82,...,ap )t is the vector of complex am-

matrix are known, the optimal detector is the likelihoodaat
test which is obtained by integrating over all the valuesef t
texture components :

ETl:L{pzl;L\Hl (Zla [N 7ZL‘T1:L7 Hl)}

N(z1) = 10

( 1L) ETl;L{pzl:L‘HO(Zlv'"7ZL|T11L) ( )
o exp(—(zr—Urbr )M (2 —Urby) /1y

B |_|Ir"=1fo i TN detM) o) Py (Tr)dTr

Y zH ’lzr
Mr=1J0” waernn exp(—%) Pr, (Tr)dT;

We do not know the multivariate distribution of the vectors

plitudes of the scatterers in the range cell. The signalorvect b;,r = 1...L, we have then modelled,,r = 1...L as an

xr is equivalent to the so-called Gaussian linear model. Thisnknown deterministic vector. In the same way, the texture
signal model has been often used in radar detection problenomponent distribution can't be perfectly known or estima-
but also in array processing scenarios, see [9] for refeenc ted and the presence of the integrals in the previous equatio

The steering matri¥, is expressed as :

1 1 o 1
el-(PrAl(l) ejq’r,Z(l) . ej(Pr.pr(l)
Er = . : (5)
Qi®1(N-1)  gigra(N-1) it (N-1)

It is assumed that the phase variation is linear so that :
@(n) =2mfn,n=0...N—-1 (6)

With these definitions, and assumiag,r = 1,...,L is
deterministic, the observed signal distribution in eaaigea
cell is zy|, y, ~ €A (Erar, tM). For the following deve-
lopments, is is useful to consider the signal vector :

Xr:Urbr,rzl...L (7)

where, taking the singular value decompositidh; =
UrSer',r =1...L, U, is theN x py unitary matrix of left
singular vectorsS; is the p; x p; diagonal matrix of non-
zero singular values ard! is the p; x p; diagonal unitary
matrix of right singular vectors.

3. GLRT DERIVATION
3.1 Optimal detector and GLRT

entails an heavy computational burden. We then propose to
model it also as a deterministic vector and use a sub-optimum
approach based on the generalized likelihood ratio testevhe
the unknown parameters are replaced by their ML-estimates.
We assume in this paper that the clutter covariance matrix
is known (or estimated thanks to a secondary data set). The
GLR is expressed as :

NGLrT(Z1L) = Jmax A(z1|Uy, by, Tp)

r,or,Tr

= /\(leL‘thr? f-r‘Hla fI’|HQ)

(11)

_ pzl:LlHo(ZliL - UliLb1:L|f1:L\H17 Ho)
Payi[Ho (z14| fl:L\Ho’ Ho)

zi—Urb)HM (2~ U by
i oG e i)

. rlHy Tr|Hy
L 1 zZH M1z,
[Mr=1 7N eXp<_ 3 H )
rHo riHo

3.2 Parameter estimation

The ML estimation ofU,,r = 1...L and consequently of
the steering matri¥, ,r = 1...L is not a straightforward pro-
blem. Indeed, no closed-form expression exists and numeri-
cal methods must be used. We have studied an EM-solution
which enables to give an ML estimate but which computa-

Considering the independence hypothesis of the rangé®hal complexity is prohibitive. That's the reason why we
cells, conditionally to the values of the texture compopentUSe spectral analysis methods such as the periodogram, AR

the scatterers amplitudes and the steering matrix, the joi,qnodels or high resolution spectral estimators which offers

density undeHy is :

Pzt |t b1, Ur M H; (215 -5 2L To, br, Ury , M)
= exp(—(z, — Urbr)HMil(Zr — Urbr)/Tr)

= 8
! (1N detM) ®
and undeHg :
pz1:|_|T1;|_7M,H0(zlv cee 7ZL|Tl:La M)
L 1 2" M1z,
“Newaag(-5 ") ©

a good Doppler resolution. The estimation of Doppler fre-
quencies is not discussed here but performances results of
the detector with the use of superresolution spectral astim
tion methods are plotted in section 5.

After estimating the steering matrix@s,r =1...L, we
are able to give the ML-estimate of the scatterers complex
amplitudesb,,r = 1...L and the texture component,r =
1...L. The ML-estimate ob,,r = 1...L underH; hypothe-
sisis:

b, = arg ma)‘pzr—Urbrm,Ho(Zr —U;by |17, Ho)
br

(UM tu)tufM g, r=1...L

(12)

According to the Neyman-Pearson criterion, and assuming
that the signal subspa&&,r = 1...L and clutter covariance and the ML-estimate of the texture | underHp andH; are



respectively :

T, = argrmamz,\rr.Ho(ZrITr,Ho)
Hn-1
zr M ™"z,
= 1— 13
S (13)
and, with (12) :
Ty = M0, 1wy (21 Tr, Ha)
r
Hmn—1
zr (M~ —Qy)zr
= T~ 7 14
< (14)
where
Q =My, (UM tuy)tuimt (15)

By injecting the ML-estimate of (12), (13) and (14) in
(11), the generalized likelihood ratio test is reexpressed

UnderHg, z = c. With the notatiorcthe whitened clut-
ter complex Gaussian vector, zero-mean and with iden-

tity covariance matrixz = /TMY/2¢.

It's shown in

[11] that the quadratic form™Ag is chi-2 distributed
with 2p degrees of freedom, p = rank 4f, if and only

if A is idempotent, i.eA? =

A. With this property,

the numerator of the ratio into brackets in (19) is chi-
2 distributed with D degrees of freedom. Indeeq, is

the orthogonal projector onto the signal subspace span-
ned by the columns 0O of dimensionp and is thus
idempotent. In the same way, the denominator of the
GRL is expressed by' (M1 - Q)z = 1¢M(I- Q')¢,
whereQ’ is the orthogonal projector onto the subspace
spanned by the columns of the whitened versiokJpf
i.e. M~Y/2U. I— Q' is then the orthogonal projector
onto the clutter subspace and its raniis- p. Conse-
guently the denominator of the ratio in (19) is chi-2
distributed with ZN — p) degrees of freedom. Conse-

quently :
Mi—q (2 M 1z)N
NZ) = 16
@@y O 2z _xen (20)
and, in an equivalent way, the generalized log-likelihoad r 2 (M- Q)z X F(,ZN P
tiois : N_oF (2P.2(N=p))
-P
Zy M 1z,
INA(Z) =N len (Zr “Q)z ) (17) where F(2p,2(N — p)) is the well-known F-

It's interesting to note that the case= 1 and steering
matrix reducing to a steering vector gives a GLRT expres-
sion identical to that given in [9] in the case of a point tar-
getin a compound Gaussian clutter. Moreover, considering a
range-only distributed target, i.e. only with a steeringtee
per range cell, we find an equivalent expression to the one
derived in [5].

4. FALSE ALARM PROBABILITY AND
THRESHOLD ASSESSMENT

A detector owns the constant false alarm rate property
(CFAR) when the detection threshold is independent of the
clutter power. More generally, in the adaptive detectien li
terature, the CFAR property refers to the clutter covaganc
matrix [10]. The derived detector is CFAR. Indeed, with the
knowledge hypothesis of the covariance malv(estimated
thanks to a secondary data set or being identity with an agile
waveform), the GLRT is independent of the texture value.
This is an important property which makes the detector adap-
tive. However, as we show in the following development, the
detection threshold depends on the steering matrix and more

distribution. The probability density function of
the log-likelihood ratio undeky is then, thanks to the
jacobian transformation :

pr(r)

N —
fi(l") = N—Epeerp,z(pr) <—

P -)
1)

— ForL > 1, the log-likelihood ratio distribution is the
convolution of previous distribution :

log Pfa

3L

pr(r

)= fo (M) * fo(T) *... fL(T) (22)

precisely, of its rank i.e. the signal subspace dimensidheor
number of components.

We define the false alarm probability so that the log-
likelihood ratio is higher than a threshold undty :

Pra = Pr{In/A\(Z|Ho)) n} (18)

We then distinguish two cases :
— ForL =1, we rewrite the log-likelihood ratio so that
the numerator and denominator are independent :

z"Qz >
Q)z

M =InA(Z|Ho,L = 1) =NIn (1+ T
(19)

L L L L L L
10 20 30 40 50 60
Threshold

FiG. 1 —false alarm probability with respect to the detection
threshold for L=1 and N=8.

The figure 1 represents the false alarm probability with
respect to the threshold fixed fdbk= 8, L = 1 and different
values of the signal subspace dimensgmon



5. SIMULATION RESULTS

We present in this section the performances of our detec-
tor on synthetic signals in different scenarios. We compare
it with the point target detector proposed in [9] and with the
range-only distributed target detector of [5].

We consider a synthetic target which is distributed over
L = 4 range cells and in each range cell, the scatterers are
located at different normalized Doppler frequencies aserep
sented in table 1. We fix unitary amplitudes for each scattere

TAB. 1 — Doppler frequencies of the scatterers.

cell # 1 2 3 4
frequencies {0.1} {0.1,0.2 {0.1,0.2,0.3 {0.1,0.2

Pd

Range-Doppler.
designed detector.

0.9

0.8

0.7F ;
¢ Range only
: 7

0.6 designed detector. .. |

0.5F

041

s Poaint target A
detector

0.3
0.2

0.1F Be |

0
SCR (dB)

We resort to Monte-Carlo simulations to estimate the deFIG. 2 — Comparison of the proposed detector designed for
tection probability based on 1By independent trials. The range and Doppler distributed target with respect to thatpoi
detection threshold is computed by inverting the distiiout ~ target detector and range-only distributed target detéoto

given in (22). The local value of the texturgr = 1...Lis N=8,Pa=10"
supposed to follow a gamma distribution :

2b" 2v—1 2.2
IO(Tr)=WTr exp(—b%t?),r=1...L

whereb controls the mean of the distribution anccontrols
the deviation with respect to the Gaussian distributiore Th
higherv is, the more Gaussian the distribution is. The clutter
is then K-distributed. We fix in the following = 0.5. The
speckle covariance matrix corresponds to a Gaussian spec:
trum of 0.2 mean value and of 0.05 standard deviation. At
last, we suppose that if the resolution is increased,lihen

the clutter power in each range cell is dividedlbwith res-
pect to a configuration where the target is fully contained in
one range cell. The target total energysis= S-_; || Erar||?

and the signal to clutter ratio is :

(23)

Erar)HM_l(Erar)
No?

L
scr= 2=t (24)

whereo? is the clutter total energy.

The figure 2 presents the detection probability using the
detector proposed, using the point target detector (censid
ring that the radar resolution is decreased by a fdct@and
using the range-only distributed target detector. Therisige
vectors of these last detectors are fixed on the normalieed fr
quency 0.1, corresponding to thaseof the target. The stee-
ring matrixes are known. We observe a performance gain of
12 dB with respect to the point target detector and approxi-
matively 7 dB to the range-only distributed target detector
(this gain is estimated at a detection probability of 0.5).

The figure 3 shows that the probability of detection in-
creases with the parametdr corresponding to the number
of pulses integrated. The figure 4 plots the detection proba-
bility for differentv : v=1,v=0.5,v =0.3 andv = 0.2.

We can note that the detection probability increases when th
clutter becomes more spiky, especially for low SCR. This re-
sult about the influence of is also observed in [5] and [6].

° L

09

0.8

0.7F

0.6

05F

-10 -5 0 5 10 15 20
SCR (dB)

FiG. 3 —Influence of the number of integrated puksen the
detection probabilityPr, = 104,

i i
10 15 20

SCR (dB)

FIG. 4 — Influence ofv on the detection probabiliti;, =

104, N =8.

In previous simulations steering matrixes or steering vec-
tors were assumed known. In a realistic scenario glpisori
knowledge is obviously not always straightforward and the



signal subspace must be estimated. We have proposed in sec- Further research will be lead on evaluating the influence
tion 3.2 to use superresolution methods to estimate the Dopf clutter correlation and the influence of thermal noisesatid
pler frequencies of the signal components. These methods the clutter. It would also be interesting to derive a dietec
need the knowledge of the sighal subspace dimension i.e. tigthout the range independency assumption of the different
number of signal components. To do so, we use Rissanenfange cells.

MDL [13] criterion. We use LS-ESPRIT [12] that enables to
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