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ABSTRACT 
This paper presents a method for noisy speech enhancement based 
on integration of a formant-tracking linear prediction (FTLP) 
model of spectral envelope and a harmonic noise model (HNM) of 
the excitation of speech. The time-varying trajectories of the 
parameters of the LP and HNM models are tracked with Viterbi 
classifiers and smoothed with Kalman filters. A frequency domain 
pitch estimation is proposed, that searches for the peak SNRs at 
the harmonics. The LP-HNM model is used to deconstruct noisy 
speech, de-noise its LP and HNM models and then reconstitute 
cleaned speech. Experimental evaluations show the performance 
gains resulting from the formant tracking, harmonic extraction and 
noise reduction stages. 
 

1. INTRODUCTION 
Linear prediction (LP) and harmonic noise models (HNM) [1] are 
the two main methods for modeling speech waveforms. LP and 
HNM offer complementary advantages; LP model provides a good 
fit for the spectral envelope whereas HNM is good at modeling the 
fine details of the harmonic plus noise structure of speech 
excitation.  

The motivation for the proposed integration, of LP and HNM, 
is to model and untilise the spectral-temporal trajectories of the 
dominant parameters of speech. For noisy speech processing this is 
a different approach to spectral amplitude estimation methods [2] 
which generally model each individual spectral sample in isolation 
without fully utilizing the wider spectral-temporal structures that 
may be used to good effect in the de-noising process to obtain 
improved results. 

The FTLP model obtains enhanced estimates of the LP 
parameters of speech along the formant trajectories. Formants are 
the resonances of the vocal tract and their trajectories describe the 
contours of energy concentrations in time and frequency. Although 
formants are mainly defined for voiced speech, characteristic 
energy concentration contours also exist for unvoiced speech at 
relatively higher frequencies  

In this paper HNMs are used to model the trajectories of the 
excitation of LP model.  Harmonic noise models (HNM) are an 
established method particularly in speech and music coding and 
text to speech synthesis [1]. The main issues in HNM are 
voiced/unvoiced classification and the estimations of the 
fundamental frequency (pitch) value, the harmonic amplitudes and 
the noise component of speech excitation.  
 Previous work related to the FTLP-HNM includes the use of 
Kalman filters for formant estimation [3] and the use of HNM for 

speech enhancement [4]. The distinctive contribution of this paper 
is the integration of LP and HNM models with Viterbi classifiers 
and Kalman filters for tracking and de-noising the trajectories of 
the model parameters for enhancement of noisy speech. 

 
2. AN OVERVIEW OF FORMANT-TRACKING LP MODEL 

WITH HNM EXCITATION 
The proposed FTLP with HNM excitation for enhancement and 
de-noising of noisy speech is illustrated in Figure 1 and consists of 
the following sections: 

(1) A pre-cleaning module for de-noising speech prior to the 
estimation of the LP model and formant parameters. 

(2) A formant-tracking LP model estimation incorporating 
Viterbi trackers and Kalman smoothers. 

(3) A pitch extraction method incorporating Viterbi trackers and 
Kalman smoothers.  

(4) A harmonic noise model estimation method using Kalman 
filters for noise reduction and smoothing. 

The LP model of speech X(z,m) may be expressed as  
),(),(),( mzVmzEmzX =                  (1) 

where E(z,m) is the z-transform of the excitation signal and V(z,m) 
is the z-transform of a LP model of the combined effect of the 
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Figure 1 – Overview of the FTLP-HNM model for 

enhancement of noisy speech. 
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vocal tract, the glottal pulse and the lip radiation. V(z,m) can be 
expressed as a cascade of a set of second order model of 
resonances and a first order model of the spectral slope as  
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where rk(m) and φk(m) are the time-varying radii and the angular 
frequencies of the poles of the LP model respectively, P+1 is the 
LP model order and G(m) is the gain.  

The speech excitation can be modeled as a combination of the 
harmonic and the noise contents of the excitation as 
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where F0(m) is the time-varying fundamental frequency of  
excitation, Ak(m) are excitation harmonics, ( )k mϕ  is the phase  and 
v(m) is the noise part of the excitation. In the following the 
estimation of the parameters of FTLP and the HNM models are 
described. 

 
3. FORMANT ESTIMATION FROM NOISY SPEECH 

In this section a robust formant-tracking LP model is introduced 
composed of pre-cleaning of speech spectrum followed by formant 
track estimation and Kalman smoothing of formant tracks. 
3.1 Initial-Cleaning of Noisy Speech 
Before formant estimation, noisy speech spectrum is pre-cleaned 
using the MMSE spectral amplitude estimation method [5]. After 
pre-cleaning, the spectral amplitude of speech is converted to a 
correlation function from which an initial estimate of the LP model 
of speech is obtained using the Levinson-Durbin method. A 
formant tracker is then used to process the poles of the LP model 
and obtain an improved estimate of the LP model parameters as 
described next. 
3.2 Formant Tracking 
The poles of the LP model of pre-cleaned speech are the formant 
candidates represented as formant feature vectors, vk comprising 
the frequency, Fk, bandwidth, Bk and magnitude, Mk, of the 
resonance at formants together with their velocity derivatives as 

vk = [Fk, Bk, Mk, ∆Fk, ∆Bk, ∆Mk]     k=1, …, N               (4) 
where the number of formants is typically set to N=5. Velocity 

derivatives, denoted by Δ, are computed as the slopes of the 
features over time. The probability distributions of formants can be 
modeled by Gaussian mixture model (GMM) or HMMs as 
described in detail in [6]. A Viterbi classifier is used to classify 
and track the poles of the LP model associated with different 
formants. Klaman filters, described in section 5, are subsequently 
employed to smooth formant trajectories [3]. Note that instead of 
formants one can equivalently employ the line spectral frequencies. 

The speech database used to investigate the effect of noise on 
formants is the Wall Street Journal. The speech is degraded by car 
noise or train noise with an average SNR in the range from 0 to 20 
dB.  To quantify the contamination of formants by noise a local 
formant signal to noise ratio measure (FSNR) [3] is defined as  
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where Xl and Nl are the magnitude spectra of speech and noise 
respectively and Fk and Bk are the frequency and bandwidth of the 
kth formant. Figure 2 displays the FSNRs of noisy speech in 
moving car and train environments. It is evident that the FSNRs 
are higher than the overall SNR. 

To quantify the effects of the noise on formant estimation, an 
average formant track error measure, defined as  
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where )(mFk  and )(ˆ mFk  are the formant tracks of clean and 
noisy speech respectively, m is frame index and L is the number of 
frames over which the error is measured.   

Figure 3 shows the improvement in formant estimation 
resulting from pre-cleaning followed by Viterbi classifier and 
Kalman filters. The reference formant tracks are obtained from 
HMMs of formants of clean speech [6]. The application of MMSE 
noise suppression results in significant reduction of formant 
tracking error. Further improvement is obtained through 
application of Kalman filtering. Over 60% improvement in format 
track error through noise reduction is achieved in the tracking of 
the first formant, which is most affected by the noise. In less 
affected higher formants (F2-F5), the Kalman-based method 
recovers the formant track with an average of 15% improvement.  

 
4. HARMONIC NOISE MODEL OF SPEECH EXCITATION 
The estimation of the parameters of the harmonic plus noise model 
of the excitation includes the followings steps: 

(a) Voiced/Unvoiced classification. 
(b) Estimation and smoothing of the fundamental frequency and 

harmonic tracks.  
(c) Estimation and smoothing of the amplitudes of harmonics. 
(d) Estimation of the noise component of the excitation. 

The estimation of HNM parameters is discussed next.  
4.1 Fundamental Frequency Estimation 
Traditionally pitch is derived as the inverse of the time τ 
corresponding to the second largest peak of the autocorrelation of 
speech. Since autocorrelation of a periodic signal is itself periodic, 
all the periodic peaks of the autocorrelation can be used in the 
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Figure 2– Variation of speech SNR at different formants in (left) 
car noise (right) train noise at average SNR=0 dB. 
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bandwidth Bk) in train noise and cleaned speech using MMSE 
and Kalman filters, the results were averaged over five males.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



pitch estimation process [7]. The proposed pitch estimation method 
is an extension of the autocorrelation-based method [7] to 
frequency domain. A pitch estimation error is defined as 
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where X(l) is the DFT of speech, F0 is a proposed value of the 
fundamental frequency (pitch) variable,  E  is sum of log spectral 
energy, and 2M+1 is a band of values about each harmonic 
frequency. The weighting function W(l) is a SNR-dependent 
Wiener-type weight. Figures 4 provides a comparative illustration 
of the performance of the proposed pitch estimation method with 
Griffin’s method [7], at different SNRs for car noise and train 
noise. It can be seen that the proposed frequency method with SNR 
weighting provides improved performances in all cases evaluated. 
 
4.2 Harmonic Amplitudes Estimation  
The harmonics of speech excitation is modeled as  
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where )(mL denotes the number of harmonics and  F0(m) denotes 
the pitch, A and S are the harmonic amplitude vector and  the 
harmonically related sinusoids vector respectively. Given the 
harmonics frequencies, the amplitudes A can be obtained either 
from searching for the peaks of the speech DFT spectrum or 
through a least square error estimation. The maximum significant 
harmonic number is obtained from the ability of the harmonic 
model to synthesis speech locally at the higher harmonics of the 
pitch [8].  

The estimate of the amplitudes of clean excitation harmonics is 
obtained from a set of Kalman filters one for each harmonic. The 
Kalman filter is the preferred method here as it models the 
trajectory of the successive samples of each harmonic. 
4.3 Estimation of Noise Component of HNM 
For unvoiced speech the excitation is noise-like across the entire 
speech bandwidth. For voiced speech the excitation is noise-like 
above some variable maximum harmonic frequency.  

The main effect of the background noises on the estimate of 
the excitation of LP model is an increase its variance. We have 

obtained perceptually good results by replacing the noise part of 
the excitation to LP model with a Gaussian noise with the 
appropriate variance estimated as the difference between the 
variance of the noisy signal and that of the noise. Finally the 
synthetic HNM of excitation signal is obtained as 

)()()(ˆ mememe nh +=                       (9) 

 
5 KALMAN SMOOTHING OF TRAJECTORIES OF 

FORMANTS AND HARMONICS 
The Kalman filter equations for all the parameters of speech are 
essentially the same, for this reason we describe the kalman 
smoothing of formant tracks. The formant trajectory is modeled by 
an AR process as 
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where cki are the coefficients of a low order (3 to 5)AR model of 
the kth formant track and ek(m)=N(0,Qk) is a zero mean Gaussian 
random process. The variance of ek(m), Qk is estimated from the 
previous estimates of ek. The algorithm for Kalman filter [9] 
adapted for formant track estimation is as follows.  
 
Time updates (Prediction) equations 

)1(ˆ)1|(ˆ −=− mmm kk FCF                           (11) 
     QPP +−=− )1()1|( mmm                         (12) 

 
Measurement updates (Estimation) equations 

     ( ) 1)1|()1|()( −+−−= RPPK mmmmm              (13) 

    ( ))1|(ˆ)()()1|(ˆ)(ˆ −−+−= mmmmmmm kkkk FpKFF      (14) 
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where )1|(ˆ −mmFk  denotes a prediction of )(mFk from estimates 
of the formant track up to time m-1, P(m) is the formant estimation 
error covariance matrix, P(m|m-1) is the formant prediction error 
covariance matrix, K(m) is the Kalman filter gain, R is the 
measurement noise covariance matrix, estimated from the variance 
of the differences between the noisy formant observation and 
estimated tracks. The covariance matrix Q of the process noise is 
obtained from the prediction error of formant tracks.  

Kalman theory assumes the signal and noise can be described 
by linear systems with random Gaussian excitation. Kalman filter 
is unable to deal with the relatively sharp changes in the signal 

0
0 .0 5

0 .1
0 .1 5

0 .2

0 5 1 0 1 5 2 0
SN R ( dB )

Er
ro

r %

0

0.05

0.1

0.15

0 5 10 15 20
SNR (dB)

E
rr

or
 %

Improved methed with weights
Improved method without weights
Griffin's method

 
Figure 4 - Comparison of different pitch track methods for 
speech in train noise (top) car noise (bottom) from 0dB SNR to 
clean. 

0

1

2

3

4

5

0 5 10 15 20SNR(dB)

IS
D

Noisy Speech

MMSE

FES

 
Figure 5 - Comparison of ISD of noisy speech in train noise pre-
cleaned with MMSE and improved with formant-base 
enhancement system (FES) at SNR = 0, 5, 10, 15 dB.  
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process, for example when speech changes from a voiced to a non-
voiced segment. However, state-dependent Kalman filters can be 
used to solve this problem. For example a two state 
voiced/unvoiced classification of speech can be used to employ 
two separate sets of Kalman filters; one set of Kalman filters for 
voiced speech and another set for unvoiced speech. In HMM-based 
speech models in each state of HMM the signal trajectory can be 
modelled a Kalman filter.   

  
6. PERFORMANCE EVALUATION OF SPEECH 

ENHANCEMENT 
The databases used for the evaluation of the performance of the 
speech enhancement systems are a subset of five male speakers 
and five female speakers from Wall Street Journal (WSJ). For each 
speaker, there are over 120 sentences. Speech signal is down 
sampled to 10 kHz from an original sampling rate of 16 kHz. The 
speech signal is segmented into overlapping frames of length 250 
samples (25 ms) with an overlap of 150 samples (15 ms) between 
successive frames.  
The following distortion measures are used. The Itakura-Saito 
Distance (ISD) measure [10] is defined as  
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where )(1 ja and )(2 ja are the LP coefficient vectors calculated 
from clean and processed speech at frame j and R1(j) is an 
autocorrelation matrix of clean speech.  

To measure the distortions of the harmonic structure of speech, 
a harmonic contrast function is defined as 
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where Pk is the power at harmonic k, Pk,k+1 is the power at the 
trough between harmonics k and k+1, NH is the number of 
harmonics and Nframes is the number of speech frames. 

Figure 5 shows the improvement in ISD measure compared 
with MMS system. It is evident that the new speech processing 
system achieves a better ISD score. Figure 6 shows the significant 
improvement in the harmonicity measure resulting from FTLP-
HNM model. Figure 7 illustrates the results of Perceptual 
Evaluation of Speech quality (PESQ) of noisy speech and speech 
restored with MMSE and FTLP-HNM methods. It s evident that in 
all respects FTLP-HNM method achieves improved results. 
Examples of contaminated and restored speech files are also 
available in http://dea.brunel.ac.uk/cmsp/florence_nighingale.htm 

  

7. CONCLUSION 
This paper presented a parameter-tracking LP model combined 
with a harmonic and noise model of the excitation for 
enhancement of noisy speech. The proposed method utilizes the 
spectral-temporal structures of speech. An important feature of the 
proposed method is the tracking of the dominant energy contours 
of the spectral envelop and the harmonics of the excitation of 
speech using Viterbi trackers followed by Kalman filters. 
Evaluations of the de-noising system shows that it delivers 
improved results compared to MMSE method with significantly 
less artifacts such as musical noise. The method is currently 

extended to restoration of speech signals where significant parts of 
the speech spectrum are missing or lost to noise. 
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Figure 6-Comparison of harmonicity of  MMSE and FTLP-HNM 

systems on train noisy speech at different SNRs. 
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Figure 7-Performance of MMSE and FTLP-HNM on train noisy 

speech at different SNRs. 
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