
NONPARAMETRIC METHOD FOR DETECTING THE NUMBER OF NARROWBAND
SIGNALS WITHOUT EIGENDECOMPOSITION IN ARRAY PROCESSING

Jingmin Xin
�
, Yoji Ohashi

�
, and Akira Sano

�

�
Wireless Systems Laboratories, Fujitsu Laboratories Ltd., Yokosuka 239-0847, Japan�

Department of System Design Engineering, Keio University, Yokohama 223-8522, Japan

ABSTRACT
A computational simple and efficient nonparametric method
for estimating the number of signals without eigendecompo-
sition (MENSE) is proposed for the narrowband signals im-
pinging on a uniform linear array (ULA). When finite array
data are available, a new detection criterion is formulated in
terms of the row elements of the QR upper-triangular fac-
tor of the auto-product of a matrix formed from the cross-
correlations between some sensor data. Then the number of
signals is determined as a value for which this ratio criterion
is maximized, where the QR decomposition with column
pivoting is also used to improve detection performance. The
proposed estimator is asymptotically consistent, and it is su-
perior in detecting closely-spaced signals with a small num-
ber of snapshots and/or at low signal-to-noise ratio (SNR).

1. INTRODUCTION

Estimating the number of incident signals from noisy array
data is an essential prerequisite for high-resolution direction-
of-arrival (DOA) estimation in array processing (e.g., [1], [2]
and references therein), where the performance of direction
estimation is adversely affected if the number of signals is in-
accurately determined. When the incoming signals are non-
coherent in the presence of temporally and spatially white
Gaussian additive noise, the number of signals can be deter-
mined from the “multiplicity” of the smallest eigenvalues of
the array covariance matrix. Consequently, eigenstructure-
based nonparametric detection methods have been proposed
and attained considerable prominence because of their rel-
atively computational simplicity without the need to esti-
mate direction parameters, and the most popular ones are
the Akaike information criterion (AIC) and the minimum de-
scription length (MDL) criterion [3], which are formulated in
terms of eigenvalues. However, these nonparametric meth-
ods suffer from serious degradation, when the incident sig-
nals are coherent (i.e., fully correlated) such as in multipath
propagation environments, where the rank of the source sig-
nal covariance matrix is smaller than the number of signals.

Although nonparametric methods such as the AIC and
MDL criterion can be modified to combat the deleterious
effect of coherency between the incident signals by using
decorrelation techniques such as (forward-backward (FB))
spatial smoothing (SS) [4], [5], their performance is usually
susceptible to the accuracy of the estimated eigenvalues. Fur-
thermore, most of the aforementioned nonparametric meth-
ods require the eigendecomposition of the (smoothed) corre-
lation matrix, and thus their applications are limited in some
applications, because the eigendecomposition process is not
suitable for real-time implementation due to its computa-
tional burdensomeness and time-consuming (e.g., [6]). Thus

a considerable amount of computation required for eigende-
composition turns out to be a major obstacle to real-time im-
plementation of most detection methods, especially when the
number of sensors is large and/or online detection is required.
Since the QR decomposition requires much lesser computa-
tional effort, some QR-based detection methods were pro-
posed (e.g., [7], [8]). However, they needs a priori knowl-
edge of true noise variance and subjective assessment or per-
form poorly in difficult scenarios.

We proposed a new QR-based detection method for the
coherent signals impinging on a uniform linear array (ULA)
[9]. By exploiting the array geometry and its shift invari-
ance property to decorrelate the coherency of signals through
subarray averaging and to eliminate the noise effect, the
number of signals is revealed in the rank of the QR upper-
trapezoidal factor of the auto-product of a combined Han-
kel matrix formed from the cross-correlations between some
sensor data. When finite array data are available, a detec-
tion criterion was formulated in terms of the row elements of
the QR upper-triangular factor, and the number of signals is
determined as a value for which this ratio criterion is maxi-
mized. Unfortunately, the problem of detecting the absence
of signals and the statistical analysis were not studied therein.

Therefore in this paper, we further strengthen the pro-
posed method [9] and analyze its statistical property, where
the absence or presence of incident signal(s) is detected by
quantitatively comparing one element of the QR factor ma-
trix with an auto-correlation of array data without the need
for any “manual” adjustment. The statistical analysis clari-
fies that the proposed estimator is asymptotically consistent
and its detection performance can be predicted by examin-
ing the QR decomposition of the asymptotical auto-product
matrix with different permutation matrices, where the choice
of the predetermined QR permutation matrix is also consid-
ered. Because the EVD/SVD and the evaluation of all cor-
relations of array data are not needed, the proposed method
is computationally efficient and suitable for real-time imple-
mentation having remarkable insensitivity to the correlation
of incident signals. The effectiveness of proposed method is
verified through numerical examples.

2. DATA MODEL AND BASIC ASSUMPTIONS

We consider a ULA of � sensors with spacing � and sup-
pose that � (�����	��
 ) narrowband signals ��
���������� with the
carrier frequency ��� are far away and impinge on the array
from distinct directions ������� . The received signal ��� ����� at
the ! th sensor can be expressed

���"�����$#
%&

��')(

��*�����,+.-"/�0.1 ��23(54�6 187"9 43:<; � ����� (1)
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where
; ������� is the additive noise, �)�

�
# 
������ , �3�������

�
#

� �,��� ��� � 	 ��� , and � is the propagation speed frequency. Then
the received signals can be rewritten in a compact form as
 ����� #���
 ����� :�� ����� (2)

where 
 ����� , 
 ����� , and
� ����� are the vectors of the received

signals, incident signals, and additive noise, and � is the ar-

ray response matrix given by � �#�� � ����(.������������� ��� % ��� with�$�������
�
#�� ��� + -"/�0 6 187"9 4 ��������� + -"/�0.1! 23(54�6 187"9 4 �#" .

Here we assume that the array is calibrated and the ma-
trix � is unambiguous. The signals ��
���������� are assumed to
be coherent under the flat-fading multipath propagation and
given by [10]


��*����� #%$ ��
�(�������� &('�)+* #�����
��������,� � (3)

where �-$ ��� are the complex attenuation coefficients with$ �/.#10 and $ ( #2� . The incident signals and additive
noise are assumed to be independent and complex circularly
Gaussian noise with zero-mean and variance as 3 ��
�(������� 
�4( �(5"����#6��7�8�9;: < , 3 ��
�(������"
�(��(5"��� #60 , 3 � � ����� �>= �(5"��� #?�@�A  8�9;: < , and 3 � � ����� � "$�(5"��� #CB  EDF G �H�I5 , where3 �J�.� , ����� = , 8�9;: < , A,K , and B K D K denote the expectation,
Hermitian transpose, Kronecker delta, and LNMOL identity
and null matrices.

3. METHOD FOR ESTIMATING THE NUMBER OF
SIGNALS WITHOUT EIGENDECOMPOSITION

(MENSE)

3.1. QR-Based Detection Method
By dividing the full array into P overlapping subarrays withQ� sensors in the forward and backward directions [4], [5], the
signal vectors of the R th forward and backward subarrays are

given by 
TS�U �����
�
#V� � U �������"� U W (����������������"� U WYX% 23(��������#" , and
TZ U �����

�
#�� �  2 U W (��������"�  2 U ���������������"��[ 2 U W (�������� = for R #����
��\��������P , where P # �^] Q� : � , and

Q�E_ � . By defining
four correlation vectors ` S�U , Q` S�U , ` Z U , and

Q` Z U between these
vectors 
TS�U ����� and 
 Z U ����� and the signals �*(������ and �  �����
as ` S�U �#a3 � 
 S�U ����� �b4 ������� ,

Q` S�U �#a3 � 
 S�U ����� �b4( ������� ,` Z U �#�3 ���*(������ 
 Z U ������� , and
Q` Z U �#�3 ���  ����� 
 Z U ������� , we

can get four � �c] Q� �dM Q� Hankel correlation matricese S #f� ` S ( ���������g` S [ 23( � " � Qe S #�� Q` S @ ��������� Q` S [ � " (4)e Z #f� ` Z ( ���������g` Z [ 23( � " � Qe Z #�� Q` Z @ ��������� Q` Z [ � "ih (5)

Then by defining an � �j] Q� �kMml Q� correlation matrix
e

ase �#n� e S � Qe S � e Z � Qe Z � , after some algebraic manipulations,
we obtain an auto-product o of matrix

e
as [10], [11]o # epe = #%� @7iq Qr  q @ Q�>smtut = s = Q� = (6)

where s #wv �!xzy �($ ({�I$ @ ���������I$ % � , t #|� Q� " ( ��� Qr ( � Qr  �I}� Q� " ( ��� Qr 4( � Qr  � Qsm} 2 1! 23(54 Q� " ( ��� Qr 4 � Qr  � Qsm} 2 1! 2 @ 4 Q� " ( � ,} #~v �!xzy � + -"/�0 6 187�� 4 � + -"/�0 6 187�� 4 ��������� + -"/�0 6 187�� 4 � , Qs #�s 23(� s 4 , Q� and
Q� ( are the submatrices of the matrix �

consisting of its first ��] Q� and
Q� rows,

Qr � #�� =�� 4� ����� ,� #���$ (��I$ @ ���������I$ % � " , and
� �"����� #��"+ -"/�0.1 ��23(54�6 187�� 4 �

+ -"/�0 1 ��23(54�6 187�� 4 ��������� + -"/�0.1 ��23(54�6 187�� 4 �#" .

Clearly the number of signals � equals the rank of o irre-
spective of the signal coherency iff the detectability condition
that ��� Q� � �j] � is satisfied (��_6� ) and is revealed in
the rank of the QR upper-trapezoidal factor � of o given byo #��>�

#�� � ��( ({����( @B 1! 2 X% 2 % 4 D 1! 2 X% 4,� � %�  2 X% 2 % (7)

where � is the � �j] Q� �kM � �j] Q� � unitary matrix, ��( ( is
the ��M � upper-triangular and nonsingular matrix, and ��( @
is the �EM � �c] Q��] � � matrix with non-zero elements.

Proof: Omitted (see [11] for details).
Remark A: When the incoming signals are uncorrelated,

we can get four Hankel correlation matrices ase S # e Z # Q�>} 2 1! 23(54�� 7 Q� " ( (8)Qe S # Qe Z # Q�>} � 7 Q� " ( (9)

where
� 7 �#%3 �z
 ������
 = ������� #%v �!xzy ����7 � ����7 � ������������7 � � , and��7 9 �#�3 ��
��������"
�4 � ������� . Clearly the ranks of these matrices

equal the number of incident signals � , and the structure of
QR decomposition in (7) are still valid.

3.2. Detecting Absence of Incident Signal
In the detection problem of array processing, we sometimes
encounter the absence of incident signal(s) (i.e., � #f0 ). For
the special case of a single signal (i.e., ��#�� ), the analytical
expressions of the QR upper-trapezoidal factor � of the auto-
product o and the auto-correlation �.� � of the received signal
��� ����� can be explicitly given by� #�]�l\� @7 Q�)� �c] Q� � (I� @

�i���� ��� + 2 -"/�0 6 187�� 4 ������� + 2 -"/�0.1 [ 2 @ 4�6 187�� 40F� 0F� ����� 0
...

...
. . .

...0F� 0F� ����� 0
� ��� (10)

�.� � #���7 : ? @ � &('�) ! #�����
��������,��� (11)

where �.� � �#�3 �����"����� �b4� ������� . By comparing this correlation��( ( with the element  �( ( of � in (10), we haveq  �( ( q��( ( #%l Q��� �^] Q� � (I� @ ��72¡�¢k£¡�¢k£ : � (12)

where ¡�¢k£ �#¤��7.� ?�@ . Thus for the case of ¡�¢k£ _�]¥�-0 dB
and

Q��#V¦��	��
-§ , as long as the signal power ��7 is not less
than

Q¨T©«ª , we can find that q  �( ( q _¤��( ( ; whereas when there
is no signal, we can obtain that q  �( ( q #%0 ����( ( # ?�@ , whereQ¨T©«ª �#������{l Q�3� �^] Q� � (I� @m¬�­ h ­\® 
�� 2,¯g� @ , which is small
due to the large � in many practice applications, and ¦#°F§
denotes the largest integer not greater than ° .

3.3. Implementation of Proposed Method
When finite array data � 
 �������{±9�')( are available, the Hankel
correlation matrices in (4) and (5) (and hence

e
) should be

replaced with their estimates ²e S , ²Qe S , ²e Z , and ²Qe Z (and hence²e ), and then the sample estimate of auto-product ²o of ²e is
given by
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²o # ²e ²e = # ²e S ²e = S : ²Qe S ²Qe = S : ²e Z ²e = Z : ²Qe Z ²Qe = Z h (13)

As a result, when the number of snapshots � is not suffi-
ciently large, the QR factor ²� of ²o will be perturbed from its
true value � in (7) and may become an upper-triangular and
nonsingular matrix with full-rank due to the effect of esti-
mation error. Hence the number of signals (i.e., the effective
rank of ²o ) could not be determined simply by comparing the
magnitude relation between the diagonal elements of ²� .

Now performing the QR decomposition with column piv-
oting to the matrix ²o in (13), we get²o�� # ²� ²� # ²� � ²��( ({� ²� ( @B 1! 2 X% 2 % 4 D % � ²� @�@ � � %�  2 X% 2 % (14)

where � is an � � ] Q� � M � � ] Q� � permutation matrix,
which is used to represent different methods of the QR de-
composition with column interchanges (see Section 4.3 for
the choice of � ). Then by introducing an auxiliary quantity� ��!5� in terms of the non-zero elements of the ! th row of QR
factor ²� as� ��!5� �#  2 X%&

��'3�
q ² �� � q :�� �j&('�) ! #�����
��������,���c] Q� (15)

we can define a ratio criterion � ��!5� as

� ��!5� �# � ��!5�� ��! : ��� �j&('�) ! #�����
��������,���c] Q��]/� (16)

where
�

is an arbitrary and positive small constant (e.g.,
� #�-0 23( � ) for avoiding the possibly undetermined ratio of 0*��0

in (16). Thus the number of incident signals is determined as
the value of the running index !�� �\����
�������� ����] Q��]���� for
which the criterion � ��!5� is maximized, i.e.,²� # x ) y
	�x��� � ��!5� h (17)

Therefore the implementation of the proposed method
and its computational complexity in MATLAB flops are sum-
marized as:
1): Set the subarray size to

Q� # ¦ �	��
-§ , which satisfies the
condition that ��
���� � Q� #6¦ �	��
-§ ���c] ��
���� , where
��
���� #�� �	��
���]>� , and �#°�� denotes the smallest integer
not less than ° . . . . . . . . . . . . . . . . . . . . . . . . . . . � flops

2): Calculate the correlation vector ²` between 
 ����� and
�b4 ����� and those of ²Q` between 
 ����� and �b4( ����� as²`	# �� ±&9�')(


 ����� � 4 ����� � ²Q`	# �� ±&9�')(

 ����� � 4( ����� (18)

where ²` #�� ²��(  � ²� @  ��������� ²�  p �#" , and ²Q` #n� ²��( ({� ²� @ ({�������� ²�  (��#" . . . . . . . . . . . . . . . . . . . . . . . . ����� � flops

3): Form the estimated matrix ²e from ²` and ²Q` as²e # �-²e S � ²Qe S � ²e Z � ²Qe Z � (19)

where ²e S #�� xz	�� ��� © ��� ��� , ²Qe S #�� xz	�� � Q� © � Q� ��� ,²e Z #"!  2 % ²Qe 4S ! % , ²Qe Z #"!  2 % ²e 4S ! % , � © #w� ²��(  �²� @  ��������� ²�  2 X% :  �#" , ��� #6� ²�  2 X% :  � ²�  2 X% W (g:  ���������²�  23(g:  �#" ,
Q� © # � ²� @ ({� ²� ¯ ({��������� ²� [ (b�#" ,

Q��� #� ²� [ ({� ²� [ W (g: (-��������� ²�  (g�#" , � xz	�� �J�.� denotes the Hankel
operation, and ! K is an L M�L counteridentity matrix.

4): Calculate the auto-product ²o of ²e as (13) and perform
its QR decomposition with the permutation matrix � as
(14). . . . . #�
 Q��� �c] Q� � @ : ��l � �|] Q� � ¯ ]�� � �c] Q� � @: 
�
 � �|] Q� �T] ­ flops

5): If q ² �( ( q � ²��( ( , the number of signal is estimated as ²� #0 , and stop the detection procedure; otherwise ²�n.#�0 ,
and continue with the next step. . . . . . . . . . . 
 flops

6): Calculate the ratio criterion � ��!5� as (16) and determine
the number of incident signals by using (17).

. . . . . . . . . . . . . . . . . . . . . . l h ­ � �c] Q� � @ : # h ­ � �c] Q� � @: �|] Q�u]/� flops

4. STATISTICAL ANALYSIS

4.1. Consistency of Proposed Detection Criterion
An important characteristic of a detection scheme is its abil-
ity to provide an unbiased estimate of the number of incident
signals for a large number of snapshots � . For investigating
the consistency of the proposed MENSE, we firstly consider
the asymptotical error of ²o in (13).
Theorem 1 By dividing the total array into

Q� : � overlap-
ping “virtual” forward and backward subarrays with �N] Q�
sensors, the asymptotical error of ²o in (13) is given by3 � ²o�] o �

# �� $ �  p � � S ( : � Z@ � : ��( (�� � S@ : � Z ( �&% (20)

where
� S ( and

� S@ are the spatially summed covariance ma-
trices of the first and last

Q� “virtual” forward subarrays,
while

� Z ( and
� Z@ are those of the first and last

Q� “virtual”
backward subarrays.

Proof: Omitted (see [11] for details).
Thus as the number of snapshots � tends to infinity,

the asymptotical error of the estimated auto-product ²o ap-
proaches zero, i.e., ' � 	 ±)(+* 3 � ²o�]po � #�B 1! 2 X% 4 D 1! 2 X% 4 .
Then we can easily obtain the following theorem.
Theorem 2 As the number of snapshots � tends toward in-
finity, the estimated number of incident signals obtained with
(17) is consistent.

Proof: Because the predetermined permutation matrix �
does not affect the statistical property of ²o�� in (14) and
the estimate ²o in (13) is asymptotically consistent, we easily
find that the QR factor ²� in (14) is asymptotically consistent,

i.e., ²� ±)(+*]-, � . Then from (7), (14), and (15), we can get� ��!5� ±)(+*]-, Q� � :.�
for �/� ! � � while

� ��!5� ±)(+*]-, �
for

� � !Y�	�^] Q� , where
Q� � �#0/  2 X%��'3� q  �� � q . Hence from (16),

we have' � 	±)(+* � ��!5�
#

12222223 2222224
Q� � :��Q� � W ( :�� ¬ Q� �Q� � W ( �# Q�.�I��&('�)���� ! � �Q� %� : �5,76%� &('�) ! #<��� # ��� &('�)���� !J� �c] Q�u]/�(21)

where
Q�.� is a positive constant. Thus it follows that � ��!5�Y]� � � � �~0 for ! � � and !98 � as �:,;6 ; consequently
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the maximum is achieved at ! #<� . That is the probability of

missing � K �#��i)�'��3� ²� ��� � and that of false alarm � S�� �#�i)�'�� � ²� 8 � � goes to zero asymptotically while the probabil-
ity of correct detection approaches to one, when ��, 6 .
Therefore we can conclude that the estimate ²� in (17) is
asymptotically consistent, i.e., ²� # � with probability one
(w.p.1) as �", 6 .

4.2. Asymptotical Threshold for Detection
By defining an asymptotical auto-product o � 7 of the esti-
mate ²o in (13) as its expectation, from (20), we obtaino � 7$#%o : �� $ �  p � Q� S ( : Q� Z@ � : ��( (�� Q� S@ : Q� Z ( �

: 
 Q� ? @ ���  p : ��( ( � A  2 X% % (22)

where �.� � #n��7 q Qr � q @ : ?�@ , while
Q� S ( ,

Q� S@ , Q� Z ( , and
Q� Z@ are

the four noise-free counterparts of
� S ( ,

� S@ , � Z ( , and
� Z@ and

their ranks equal the number of incident signals � . Then the
rank of matrix o � 7 in (22) is given by) xz	�� ��o � 7.�

#
� � � &('�) ?�@ # 0 xz	 v �{'�)��", 6

�c] Q� � '	��

��)g� h (23)

Hence the estimated number of signals is perturbed by the
noise variance ?�@ and the number of snapshots � , and we
can obtain a theoretical detection threshold for the SNR, � ,
or angular separation for correct detection by substituting the
asymptotical matrix o � 7 into the proposed algorithm.

Further when there is no incident signal, we can get��( ( # ? @ � xz	 v o � 7 # l� Q� ?��{A  2 X% h (24)

As a result, the element   � 7( ( of the QR upper-triangular factor� � 7 of o � 7 in (24) is given by  � 7( ( # l� Q� ?�� h (25)

Then we can theoretically obtain the low threshold for the
number of snapshots

Q� for correctly detecting the absence
of incident signal(s) as Q� 8/l Q� ?�� h (26)

4.3. A Choice of QR Permutation Matrix
By reexpressing the matrix o � 7 in its column vectors � Q� � � ,
the linear independence between these columns can be got
by considering the Gramian matrix � of o � 7 given by

� �#�o = � 7 o � 7 # ��� � ��� (27)

where � � � # Q� =� Q� � , and � is centrosymmetric, Hermitian,
and persymmetric as well as o � 7 . Then a quantitative mea-
sure of linear independence of columns � Q� � � is the depen-
dency coefficient

Q� � � defined asQ� � � �# q � � � q® � � ��� �.� (28)

where
Q� � � �f� . Thus by comparing the elements of a depen-

dency coefficient matrix
Q� # � Q� � ��� , we can form a permuta-

tion matrix � to ensure the minimum linear dependency be-
tween the adjacent columns of o � 7�� . Further this predeter-
mined permutation matrix � can be used in (14) to improve
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Figure 1. Probability of correct detection versus the SNR for
Example 1 (vertical dotted line: detection threshold; � #�zl , � #��-0 , and � # 
 ).

the detection performance by lowing the detection threshold
without increased computational complexity.

Remark B: The proposed determination of the permuta-
tion matrix may not be feasible in some applications, when
the knowledge of asymptotical auto-produce o � 7 is unavail-
able. Then an alternative is the column index maximum-
difference bisection rule based scheme [8], which could pos-
sibly provide the shuffled columns with relatively small de-
pendency by considering the special symmetries of o .

5. NUMERICAL EXAMPLES

The ULA with � sensors is separated by a half-wavelength,
and the simulation results shown below are based on 1000
independent trials.
Example 1—Performance versus SNR: Two coherent signals
with equal power ( ��7 #6� ) arriving from ��( # ­�� and � @ #��
 � , and their SNR is varied from ]¥�-0 to 15dB. The number
of sensors is � #��-0 , and the number of snapshots is � #�zl . The subarray size is set at L # ­ for the SS- and FBSS-
based methods.

From Section 4.3, we can obtain the predetermined per-
mutation matrix as � #�� � ({���
�z��� @ ��� � ���F¯ � (referred as the
QRPA), where � � is an � �6] Q� ��Mk� unit vector with a unity el-
ement at the ! th location and zeros elsewhere. The QR-based
method [8] is modified by combining the FBSS with the
MDL criterion and referred as the QR-MDL method, where
the QR decomposition with the predetermined permutation
matrix based on the column index maximum-difference bi-
section rule [8] (referred as the QRPP) is also used. The
probabilities of correct detection by the proposed algorithm
with QRPA, QRPP, and QR (i.e., � # A  2 X% ) in terms of
the SNR are shown in Fig. 1. The proposed algorithm with
QR generally outperforms the SS- and FBSS-based methods
[3]-[5] with EVD and the QR-MDL method. Moreover the
performance of the proposed algorithm can be significantly
improved at lower SNR by introducing the column pivoting
into the QR decomposition (i.e., the QRPP, and QRPA) to
further remedy the effect of additive noise, and the proposed
QRPA has a similar effect as the QRPP [8]. Further the theo-
retically low threshold ¡�¢k£ for correct detection is given by

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Probability of Correct Detection versus Correlation Factor

Correlation Factor ρ

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

MDL
AIC
SS−MDL
SS−AIC
FBSS−MDL
FBSS−AIC
QR−MDL
MENSE−QR
MENSE−QRP
MENSE−QRPP
MENSE−QRPA

Figure 2. Probability of correct detection versus the correla-
tion factor for Example 2 ( ¡�¢k£ #�0 dB, � # �zl , � #n�-0 ,
and � # 
 ).] # or ]�� dB, when the QR or QRPP/QRPA is used.
Example 2—Performance versus Correlation Factor: Then
we evaluate the detection performance with respect to the
correlation b etween the incident signals, where correlation
factor r is varied from 0 to 1 (its phase is assumed to be zero),
the SNR is set at 0dB, and the number of snapshots is fixed
at � # �zl , while the other parameters are the same as those
in Example 1.

As shown in Fig. 2, although the proposed MENSE with
QR or QRP is inferior to the FBSS-based AIC method, the
MENSE algorithm with QRPP or QRPA is superior to the
other methods in detecting strongly correlated signals, where
the slight degradation for low correlations is due to the re-
duced dimension of the � ��] Q� �FM � ��] Q� � sample matrix ²o ,
where �c] Q��# ­ �	� . Thus we can see that the proposed
MENSE with QRPP/QRPA is insensitive to the correlation
between incident signals.
Example 3—Detecting Absence of Incident Signal: There
is no signal impinging on the array, i.e., � #+0 , where
� #��-0 , and the number of snapshots is varied from � #��
to � # �-0�0 . The probability of false alarm with the proposed
algorithm with QRPP/QR versus the number of snapshots is
plotted in Fig. 3 for several noise variance ?�@ #6����0 h ­ ��0 h # ,
and 0.2. Generally the proposed algorithm with QRPP/QR
has a rather smaller probability of false alarm and performs
better than the EVD-based AIC and MDL methods for a
smaller � when ?�@ ��0 h # . Additionally as analyzed in (26),
the theoretical threshold for

Q� is given by
Q� # 
������������ ,

and 5 for the noise variances ?�@ # ����0 h ­ ��0 h # , and 0.2, re-
spectively.

6. CONCLUSION

A new QR-based method was proposed for estimating the
number of narrowband signals impinging on a ULA, and
its asymptotical consistency was studied. The proposed al-
gorithm is superior in detecting closely-spaced signals with
a small number of snapshots and/or at relatively low SNR.
Moreover careful examinations revealed that the QRPP can
be introduced into the proposed algorithm to significantly
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Figure 3. Probability of false alarm versus the number of
snapshots for several noise variances for Example 3 (vertical
dotted line: detection threshold; � #��-0 , and � # 0 ).
improve the detection performance without increased com-
putational complexity and any a priori knowledge.
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