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ABSTRACT

This paper deals with the problem of blind symbol timing estima-
tion with M-ary phase-shift keying signals. A least-squares (LS)
estimator exploiting the structure of the received signal when the
convolution of the transmitter’s signaling pulse and the receiver fil-
ter satisfies the Nyquist criterion, is proposed. Since the derived
LS algorithm requires a maximization with respect to a continuous
variable, a closed-form approximate LS (ALS) algorithm, suitable
for digital implementation, is proposed. Computer simulation re-
sults show that with small excess bandwidth factors the derived ALS
algorithm outperforms previously proposed algorithms at moderate
and high signal-to-noise ratios.

1. INTRODUCTION

Non-data-aided (blind) feedforward symbol timing estimators for
burst-mode transmissions have received much attention [1]-[9]. In
particular, in [6] Oerder and Meyr (O&M) proposed a timing syn-
chronizer employing a square-law nonlinearity. For systems with
large excess bandwidth the performance of the O&M algorithm is
very close to the modified Cramér-Rao bound (MCRB) [1]. How-
ever, its performance is unsatisfactory when operating with narrow-
band signaling, that is, when pulses with small rolloff are exploited.

In [4] a blind timing recovery scheme for phase-shift key-
ing (PSK) modulated signals is presented. Specifically, at first a
cost-function based on a logarithmic nonlinearity obtained by the
approximation of the likelihood function for low values of SNR
(LOGN) is derived. Then, a closed-form algorithm based on an
approximation of the LOGN cost-function (ALOGN) is proposed.
It is shown in [4] that, with small excess bandwidth factors and for
moderate and high SNRs, the ALOGN algorithm outperforms the
O&M algorithm and the synchronization algorithm exploiting the
absolute value nonlinearity (AVN) [7].

Recently, in [8] an efficient estimator termed APP, which fully
exploits the second- and fourth-order cyclostationary statistics of
the oversampled received signal, has been proposed. It is shown
in [8] that the APP algorithm improves the performance of the
above mentioned algorithms when dealing with narrowband signal-
ing pulses and large observation intervals. However, all the pre-
viously mentioned algorithms present a performance floor due to
self-noise.

In this paper a non-data-aided self-noise-free symbol timing es-
timation algorithm for M-ary PSK signals, is derived. Specifically, a
least-squares (LS) estimator exploiting the structure of the received
signal when the convolution of the transmitter’s signaling pulse and
the receiver filter satisfies the Nyquist criterion, is obtained. Since
the LS algorithm requires a maximization with respect to a con-
tinuous variable, a closed-form approximate LS (ALS) algorithm,
suitable for digital implementation, is proposed. Specifically, the
ALS algorithm is obtained by truncating the Fourier series expan-
sion of the LS cost function. Computer simulation results show that,
although the LS cost function leads to a self-noise free timing esti-
mator, the ALS algorithm presents a performance floor due to the
introduced approximation. However, when dealing with narrow-
band signaling pulses, the ALS estimator outperforms at moderate
and high SNRs all the above mentioned estimators.

2. SIGNAL MODEL AND PROPOSED ALGORITHM

The received baseband signal is modeled as

r(t) = Ae jθ
+∞

∑
l=−∞

cl g(t− lT − τ)+w(t) (1)

where A, θ and τ denote amplitude, carrier phase and timing epoch
of the useful signal, respectively. Moreover, in (1) the real pulse
g(t) is the convolution of the transmitter’s signaling pulse and the
receiver filter, T is the symbol interval, {cl}∞

l=−∞ are the data
symbols and w(t) is filtered noise with zero mean and variance
σ2

w = E[| w(t) |2]. In the following we assume that
(AS1) The data symbols {cl}∞

l=−∞ are equiprobable statistically in-
dependent and identically distributed random variables belong-
ing to the M-PSK alphabet {exp( j2πm/M);m = 0,1, ...,M−1}.

(AS2) The pulse g(t) satisfies the Nyquist criterion (i.e., g(0) = 1
and g(lT ) = 0 for l 6= 0).
Under the assumptions (AS1)-(AS2) and by assuming that the

additive noise at the input of the receiver filter is a zero-mean cir-
cular complex white Gaussian process statistically independent of
the transmitted signal, the ALOGN algorithm has been derived in
[4]. Specifically, it is shown in [4] that the ALOGN algorithm out-
performs the O&M and the AVN algorithm with small excess band-
width factors and for moderate and high SNRs. Recently, in [8] an
efficient estimator termed APP, which fully exploits the second- and
fourth-order cyclostationary statistics of the oversampled received
signal, has been proposed. It is shown in [8] that the APP algorithm
improves the performance of the above mentioned algorithms when
dealing with narrowband signaling pulses and large observation in-
tervals. However, all the previously mentioned algorithms present a
performance floor due to self-noise.

In this paper a blind LS self-noise-free estimation algorithm
for M-PSK signals, exploiting the structure of the received signal
when the signaling pulse at the output of the receiver filter satis-
fies the Nyquist criterion, is derived. To obtain this estimator let
us observe that under the assumption of high SNR the magnitude
of the output of the receiver filter at the time instants tk = τ̃ + kT ,
for k = 0,1, ...,L0− 1, by neglecting the noise×noise term, can be
approximated by

|r(τ̃ + kT )| ' A

∣∣∣∣∣
+∞

∑
l=−∞

cl g(τ̃− τ +(k− l)T )

∣∣∣∣∣+ z(τ̃ + kT ), (2)

where the signal×noise term z(τ̃ + kT ) is zero-mean and L0 repre-
sents the length of the observation interval in symbols. In particular,
in the absence of noise (σ2

w = 0) and under the assumption (AS2),
since the data symbols belong to the M-PSK alphabet, the mag-
nitude of the output of the receiver filter at the sampling instants
tk = τ + kT is given by

|r(τ + kT )| = A, k = 0,1, ...,L0−1. (3)

Taking into account (2) and (3) it follows that a symbol timing esti-
mate can be obtained by solving the joint minimization problem

(Â, τ̂) = argmin
Ã,τ̃

{
L0−1

∑
k=0

(|r(τ̃ + kT )|− Ã
)2

}
(4)
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where Ã and τ̃ are trial values for the signal amplitude and the tim-
ing epoch, respectively. The minimization of the least-square error
(LSE) in (4) with respect to Ã leads to

Â(τ̃) =
1
L0

L0−1

∑
k=0

|r(τ̃ + kT )| (5)

and by substituting (5) in (4) it follows that

τ̂LS = argmax
τ̃
{ΓLS(τ̃)} (6)

where

ΓLS(τ̃)
4
=−

L0−1

∑
k=0

|r(τ̃ + kT )|2 +
1
L0

(
L0−1

∑
k=0

|r(τ̃ + kT )|
)2

. (7)

Note that as the noise power σ2
w vanishes the LSE provided by the

LS symbol timing estimator (6) tends towards zero, that is, the LS
estimator (6) is self-noise free. A detailed proof of this property of
the LS symbol timing estimator is reported in Appendix.

By using a different approach, specifically by assuming that the
additive noise at the input of the receiver filter is a zero-mean circu-
lar complex white Gaussian process statistically independent of the
transmitted signal and by exploiting an expansion at low SNR of the
log-likelihood function averaged over the symbols and phase in [3]
has been obtained the well known square-law (SL) timing estimator

τ̂SL = argmax
τ̃
{ΓSL(τ̃)} (8)

where

ΓSL(τ̃)
4
=

L0−1

∑
k=0

|r(τ̃ + kT )|2 . (9)

Moreover, by using the low SNR assumption, in [4] has been de-
rived the symbol timing estimator based on the logarithmic nonlin-
earity

τ̂LOGN = argmax
τ̃
{ΓLOGN(τ̃)} (10)

where

ΓLOGN(τ̃)
4
=

L0−1

∑
k=0

ln

[
1+

(
Es

N0

)2
|r(τ̃ + kT )|2

]
. (11)

In (11) Es/N0 is the ratio between the signal energy per symbol Es
and the power spectral density of the real and imaginary compo-
nents of the white Gaussian noise at the input of the receiver filter.

In the following we will present a performance comparison, as-
sessed via computer simulation, between the estimators (6), (8) and
(10). We will show that, unlike the estimators (8) and (10), the
LS estimator in (6) (according to the analytical results reported in
Appendix) is self-noise free. This is due to the fact that the LS
cost function is derived by exploiting an approximation for high
SNR values, while the estimators in (8) and (10) are optimal for
low SNR values, and, then, they only consider the impact of the
additive noise, ignoring the influence of self-noise.

Since τ̃ in (6) (as well as in (8) and (10)) is a continuous vari-
able, the exhaustive search necessary to find the value τ̂ where the
maximum is achieved can be impractical. Therefore, to avoid in
burst mode transmissions the long acquisition time resulting from
feedback schemes, a closed-form ALS algorithm, suitable for dig-
ital implementation, is proposed. Specifically, as in [4] and [9], to
obtain an efficient implementation of the estimator in (6) we first
consider the expansion into a Fourier series of the cost function
ΓLS(τ̃) in the interval 0≤ τ̃ < T

ΓLS(τ̃) =
∞

∑
m=−∞

Cme j 2π
T mτ̃ (12)

with

Cm =
1
T

∫ T

0
ΓLS(τ̃)e− j 2π

T mτ̃ dτ̃ (13)

and, then, we approximate ΓLS(τ̃) as

ΓLS(τ̃)'C0 +2ℜ
{

C1e j 2π
T τ̃

}
, (14)

where ℜ{·} denotes real part. The accuracy of the approximation
in (14) will be discussed in the next section.

Accounting for (6) and (14), the maximum of ΓLS(τ̃) is
achieved for

τ̂ =− T
2π

arg [C1] (15)

where arg[x] denotes the phase of x. The coefficient C1 in (15) can
be approximated by

C1 =
1
Q

Q−1

∑
k=0

ΓLS

(
kT
Q

)
e− j 2π

Q k (16)

where Q is the oversampling factor. Thus, taking into account (6),
(7) and (12)-(16), the proposed closed-form ALS symbol timing
estimator results to be

τ̂ALS= − T
2π

arg

{
1
Q

Q−1

∑
k=0

[
−

L0−1

∑
l=0

∣∣∣∣r
(

kT
Q

+ lT
)∣∣∣∣

2

+
1

L0

(
L0−1

∑
l=0

∣∣∣∣r
(

kT
Q

+ lT
)∣∣∣∣

)2

e− j 2π

Q k



 .

(17)

Note that unlike the LS symbol timing estimator in (6) the proposed
ALS estimator in (17) is not completely self-noise free due to the
approximations (14) and (16). However, it will be shown in the next
section that the ALS estimator can outperform previously proposed
symbol timing estimators.

3. SIMULATION RESULTS

In this section, we present computer simulations to compare the
performance of the proposed ALS estimator in (17) with that of
O&M, APP, AVN, ALOGN and FLN estimators, the last being the
symbol timing estimator based on the fourth-law nonlinearity [7].
Moreover, the performance of the estimators based on the (brute
force) maximization of the LS, SL and LOGN cost-functions in (7),
(9) and (11), respectively, is reported. It is assumed that the additive
noise at the input of the receiver filter is white Gaussian noise with
independent real and imaginary components each of power spectral
density N0. The experimental results are obtained by performing
a number of 105 Monte Carlo trials and for a timing epoch fixed
at τ = 0.3T . The oversampling factor Q = 4 is adopted. In the

following the SNR is defined as SNR
4
= 10log10(A

2/σ2
w). Note that

under the previous assumption about the noise at the input of the
receiver filter and by assuming, without loss of generality, that the
impulse response of the receiver filter is a unity-energy function, it
follows that A2/σ2

w = Es/N0.
Figure 1 shows the mean square error (MSE) of the considered

timing estimators, normalized to the symbol period T , as a func-
tion of SNR and for a QPSK system. The pulse g(t) is a raised-
cosine rolloff function with α = 0.1 and the observation length is
L0 = 100. In the figure the MCRB is reported as a benchmark. The
results show that, according to the results reported in Appendix, the
LS cost-function is self-noise free, while the performance of the es-
timators (8) and (10) presents a floor. This is due to the fact that the
LS cost function is derived by exploiting an approximation for high
SNR values, while the SL and LOGN estimators are optimal for low
SNR values, and, then, they only consider the impact of the addi-
tive noise, ignoring the influence of self-noise. Moreover, among
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Figure 1: Normalized MSE of the considered estimators as a func-
tion of SNR (QPSK, Q=4, α = 0.1 and L0 = 100).

the closed-form estimators, the proposed ALS estimator provides
the best performance for SNR≥ 15dB.

In Fig. 2 is shown the normalized MSE of the considered timing
estimators, as a function of SNR for α = 0.1 and L0 = 30. By mak-
ing a comparison with the results presented in the previous figure, it
follows that, as the length of the observation interval decreases, the
performance gain of the proposed ALS algorithm with respect to all
the other considered closed-form algorithms increases.

Figure 3 reports the bit-error-rate (BER) achieved by the con-
sidered closed-form synchronization schemes and the BER ob-
tained in the case of perfect synchronization. Specifically, in Fig.3
is shown the BER as a function of SNR for a 16-DPSK system with
α = 0.1, and for L0 = 30. The results show that in the considered
range of values of SNR only the proposed ALS estimator assures
a contained performance loss with respect to the case of perfect
synchronization. Numerical results not reported here for the lack
of space show that the performance improvement of the proposed
ALS estimator with respect to the other considered algorithms in-
creases as the observation interval decreases and/or the size of the
constellation M increases.

Figure 4 shows the normalized MSE of the considered timing
estimators, as a function of SNR for α = 0.9 and L0 = 100. The
results show that for this high value of the rolloff the performance
of the self-noise-free LS cost-function results to be quite far from
the MCRB. This is due to the fact that, as shown in Fig. 5, the LS
cost-function is more flat for higher values of the rolloff. Therefore,
in this case the LS estimator outperforms the other estimators only
for high values of SNR. However, results not reported here for the
sake of brevity, show that the cross-over point is observed for lower
values of SNR as the observation length L0 decreases.

To obtain some insight about the performance of the proposed
ALS estimator as a function of the rolloff parameter, in Fig. 5 is re-
ported the behavior of the LS cost-function as a function of τ̃/T for
several values of the rolloff parameter α and for L0 = 100, Q = 4
and SNR = 30dB. The results show that for α = 0.1 the LS cost-
function resembles in 0 ≤ τ̃/T < 1 a sine function. Thus, for this
low value of the rolloff parameter the coefficient C1 (see (12)) is
much larger than the Fourier coefficients associated with higher fre-
quencies. However, as the rolloff parameter increases, the LS cost-
function results to be very different from a sine function. Therefore,

0 5 10 15 20 25 30 35 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M
S

E
(τ

)
SNR[dB]

 

 

ALS
O&M
ALOGN
AVN
FLN
APP
LS
SL
LOGN
MCRB

Figure 2: Normalized MSE of the considered estimators as a func-
tion of SNR (QPSK, Q=4, α = 0.1 and L0 = 30).

as the rolloff parameter increases the approximation in (14) is less
and less accurate.

Finally, figure 6 reports the normalized MSE of the considered
timing estimators as a function of the rolloff parameter α and for
SNR = 30dB. Among the closed-form estimators, the proposed
ALS estimator provides the best performance for α ≤ 0.45, while
for higher values of α the APP and O&M algorithms provide the
lowest MSE. The performance degradation of the proposed ALS
estimator is a consequence of the behavior of the LS cost-function
and of the previously discussed lack of accuracy in the approxima-
tion in (14) for high values of the rolloff parameter.

4. CONCLUSIONS

The problem of blind symbol timing estimation with M-PSK signals
has been considered. An LS estimator exploiting the structure of the
received signal when the convolution of the transmitter’s signaling
pulse and the receiver filter satisfies the Nyquist criterion, has been
derived. Since its implementation requires a maximization with re-
spect to a continuous variable, a closed-form approximate LS algo-
rithm, suitable for digital implementation, has been derived by ap-
plying an approximation to the Fourier series expansion of the LS
cost function. Computer simulation results have shown that, with
small excess bandwidth factors, the derived ALS algorithm outper-
forms previously proposed algorithms at moderate and high SNRs.
On the other hand, as the rolloff parameter increases the proposed
ALS estimator presents a performance degradation due to the be-
havior of the LS cost-function and to the decrease in the accuracy
of the approximation.

APPENDIX

In this appendix we demonstrate that the LS estimator is self-noise
free.

Let us observe that accounting for (4) and (5) the LS symbol
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Figure 3: BER of the considered estimators as a function of SNR
(16-DPSK, Q=4, α = 0.1 and L0 = 30).

timing estimator can be written as

τ̂LS = argmin
τ̃





L0−1

∑
k=0

(
|r(τ̃ + kT )|− 1

L0

L0−1

∑
p=0

|r(τ̃ + pT )|
)2





= argmax
τ̃
{ΓLS(τ̃)}

(18)
where

ΓLS(τ̃) =−
L0−1

∑
k=0

(
|r(τ̃ + kT )|− 1

L0

L0−1

∑
p=0

|r(τ̃ + pT )|
)2

. (19)

Moreover, as stated in (3), in the absence of noise and at the actual
value of the symbol timing (τ̃ = τ) it results that

|r(τ + kT )| = A, k = 0,1, ...,L0−1. (20)

From (19) (that after simple algebra leads to (7)) and (20) it im-
mediately follows that in the absence of noise ΓLS(τ) = 0. There-
fore, since ΓLS(τ̃) ≤ 0 (see (19)), it follows that in the absence of
noise, independently of the data pattern, ΓLS(τ̃) achieves a maxi-
mum at the actual value of the symbol timing. Then, the proposed
LS symbol timing estimator results to be self-noise free if it can be
shown that ΓLS(τ̃) < 0 for τ̃ 6= τ . Note that from (19) it immedi-
ately follows that ΓLS(τ̃) = 0 if and only if, for k = 0,1, ...,L0−1,
|r(τ̃ + kT )| is a constant for some τ̃ 6= τ , that is, if and only if, for
k = 0,1, ...,L0 − 1, VAR [|r(τ̃ + kT )|] = 0 for some τ̃ 6= τ . There-
fore, the proposed LS estimator is self-noise free if the condition
VAR [|r(τ̃ + kT )|] = 0 is satisfied only for τ̃ = τ . Of course this is

equivalent to show that VAR
[
|r(τ̃ + kT )|2

]
= 0 only for τ̃ = τ . To
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Figure 4: Normalized MSE of the considered estimators as a func-
tion of SNR (QPSK, Q=4, α = 0.9 and L0 = 100).

this end we observe that

E
[
|r(τ̃+kT )|4

]
= A4

∞

∑
l=−∞

E
[
| cl |4

]
g4(τ̃−τ +(k−l)T )

−A4
∞

∑
l=−∞

2E2
[
| cl |2

]
g4(τ̃−τ +(k−l)T )

−A4
∞

∑
l=−∞

∣∣∣E
[
c2

l

]∣∣∣
2

g4(τ̃−τ +(k−l)T )

+A4
∞

∑
l1=−∞

E
[
c2

l1

]
g2(τ̃−τ+(k−l1)T )

×
∞

∑
l2=−∞

(
E

[
c2

l2

])∗
g2(τ̃−τ+(k−l2)T )

+2A4
∞

∑
l1=−∞

E
[
| cl1 |2

]
g2(τ̃− τ +(k−l1)T )

×
∞

∑
l2=−∞

E
[
| cl2 |2

]
g2(τ̃− τ +(k− l2)T )

(21)
and

E
[
|r(τ̃ + kT )|2

]
= A2

∞

∑
l=−∞

E
[
| cl |2

]
g2(τ̃− τ +(k− l)T ). (22)

Under the assumption (AS1) it follows that E[| cl |2] = E[| cl |4] = 1
∀l, and, moreover, E[c2

l ] = 1 for M= 2 and E[c2
l ] = 0 for M≥ 4,
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Figure 5: Behavior, in a single run, of the LS cost-function for sev-
eral values of the rolloff parameter α (QPSK, Q=4, SNR = 30dB,
and L0 = 100).

therefore, for M= 2 from (21) and (22) it follows that

VAR
[
|r(τ̃ + kT )|2

]
=

=−2A4
∞

∑
l=−∞

g4(τ̃− τ +(k− l)T )

+2A4

(
∞

∑
l=−∞

g2(τ̃−τ +(k− l)T )

)2

= 2A4
∞

∑
l2, l1 =−∞,

l2 6= l1

g2(τ̃− τ +(k− l1)T )g2(τ̃− τ +(k−l2)T ),

(23)
while, for M≥ 4

VAR
[
|r(τ̃+kT )|2

]
=

= A4
∞

∑
l1, l2 =−∞,

l2 6= l1

g2(τ̃−τ +(k− l1)T )g2(τ̃− τ +(k− l2)T ).

(24)
From (23) and (24), under the assumption (AS2), it follows that

for k = 0,1, ...,L0−1 and ∀ M

VAR
[
|r(τ̃ + kT )|2

]
>0

for τ̃ 6= τ and, then, ΓLS(τ̃) < 0 for τ̃ 6= τ . This complete the proof.
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Figure 6: Normalized MSE of the considered estimators as a func-
tion of the rolloff parameter α (QPSK, Q=4, SNR = 30dB and
L0 = 100).
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