
FREQUENCY SELECTIVE DETECTION OF NQR SIGNALS IN THE PRESENCE OF
MULTIPLE POLYMORPHIC FORMS

Samuel Somasundaram†, Andreas Jakobsson‡ and John. A. S. Smith†

† Depts. of Mechanical Engineering and Chemistry, King’s College London, UK.
‡ Dept. of Electrical Engineering, Karlstad University, Sweden.

ABSTRACT
Nuclear quadrupole resonance (NQR) is a radio frequency
(RF) technique that detects compounds in the solid state and
is able to distinguish between different polymorphic formsof
certain compounds. For example, a typical sample of trini-
trotoluene (TNT) will contain at least two polymorphic forms
with rather different NQR properties. In this paper, we pro-
pose a frequency selective hybrid detector that exploits the
presence of such polymorphic forms. The presented detector
offers both improved probability of detection, as comparedto
recently proposed detectors, and allows for an estimation of
the relative proportions of the multiple polymorphic forms.

1. INTRODUCTION

Nuclear quadrupole resonance (NQR) is a solid state, pulsed
radio frequency (RF) technique that can be used to detect sig-
nals from quadrupolar nuclei, a requirement that is fulfilled
by roughly 50% of the periodic table. Unlike NMR and MRI,
NQR does not require a large static magnetic field to split the
energy levels of the nucleus [1], making it attractive as a non-
invasive technique, for instance, in the detection of hidden
narcotics, such as cocaine and heroine, and explosives, e.g.,
for landmine detection [2]. Many chemical compounds form
different crystalline structures known as polymorphic forms
or polymorphs. Unambiguous detection and quantification
of these forms is important in several applications. For in-
stance, the varying intermolecular interactions among poly-
morphs can give rise to different pharmaceutical properties
in medical drugs [3]. Another example is TNT, a common
explosive in landmines, which exists in mainly two polymor-
phic forms, monoclinic and orthorhombic. Typically, it is of
significant interest to either determine the relative quantity of
the existing polymorphs, or to exploit the combined signals
from all contained polymorphs to improve on the probabil-
ity of detection (for a given false alarm), facilitating a faster
and safer detection. Recently, we proposed various detectors
that examine responses from a single polymorph [4–6]. Such
detectors, which can only rely on resonant lines from one
polymorph, will suffer if other polymorphs are also present.
Herein, we present a hybrid detector which accounts for sig-
nals from multiple polymorphs and allows for estimates of
the proportions of these polymorphs. The algorithm con-
structs a detection variable from a frequency selective data
set, allowing for significant robustness in case of typically
present residual RF interference (RFI). Evaluation of the al-
gorithm using measured NQR signals indicate that the pre-
sented technique offers a significantly improved probability
of accurate detection for samples containing more than one
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polymorphic form. For signals containing only one polymor-
phic form, the hybrid detector simplifies to the so-called Fre-
quency selective Echo Train Approximate Maximum Likeli-
hood (FETAML) detector introduced in [6].

2. DATA MODEL

As described in [6], themth NQR echo, produced by thepth
polymorph, can be well modelled as

y(p)
m (t) =

d(p)

∑
k=1

e−(t+mµ)η(p)
k (τ)α(p)

k e−β (p)
k |t−tsp|+iω(p)

k (τ)t , (1)

wheret = t0, . . . ,tN−1 is the echo sampling time, not neces-
sarily being consecutive instances, but typically starting at
t0 6= 0 to allow for the dead time between an excitation pulse
and the first measured sample (after the pulse)1. For simplic-
ity, we will hereafter assume a uniform sampling starting at
t0, but note that the detectors may be generalised to also allow
for non-uniform sampling. Furthermore,m = 0, . . . ,M−1 is
the echo number;tsp, often called thetau spacing, is the time
between the centre of the refocusing pulse2 and the echo cen-

tre; µ = 2tsp is the echo spacing;α(p)
k andβ (p)

k denote, for
the pth polymorph, the (complex) amplitude and sinusoidal
damping constant of thekth NQR frequency, respectively.

Furthermore,ω(p)
k (τ) and η(p)

k (τ) are the frequency shift-
ing and the echo train damping shifting functions of thekth
NQR frequency component of thepth polymorph, respec-
tively, both of which generally depend on the (unknown)
temperature,τ, of the examined sample. An important point
to note is that the number of damped sinusoids,d(p), as well
as the frequency shifting function and the echo train damping

shifting function for each spectral line,ω(p)
k (τ) andη(p)

k (τ),

may be assumed to beknown, whereasα(p)
k as well as the

temperature of the examined sample,τ, areunknown. Fur-

thermore, the damping constants,β (p)
k , are essentially known

for a given sample, but as variations may exist between sam-
ples, we will here allow for an uncertainty also in these con-

stants, modellingβ (p)
k as unknown. For NQR signals of

many samples, such as for TNT, the frequency shifting func-
tion at likely temperatures of the sample can be well mod-
elled as [2,7]

ω(p)
k (τ) = a(p)

k −b(p)
k τ, (2)

1Accounting for the dead time is equivalent to accounting for alarge
contribution to the first order phase correction in the NQR spectrum.

2The term refocusing pulse refers to the pulse, for example in apulsed-
spin locking (PSL) sequence, which refocuses the transverse magnetisation
to produce an echo.
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wherea(p)
k andb(p)

k , for k = 1, . . . ,d(p), are given constants.
Often, the relative ratio between the signal amplitudes is ac-
curately known for a given examined sample and experimen-

tal set-up. To exploit this knowledge, we will letα(p)
k =

ρκ(p)
k , whereρ and κ(p)

k denote the common scaling con-
stant due to the signal power and the a priori known relative
(complex) scalings between thed(p) signal components, re-
spectively. Herein, we are interested in examining samples
possibly containing multiple polymorphic forms. As a re-
sult, we extend the data model in (1) to consist of the NQR
response fromP polymorphs, writing the observed data as

ym(t) =
P

∑
p=1

γpy(p)
m (t)+w(t), (3)

whereγp denotes the proportion of thepth polymorph, and
w(t) is an additivecoloured noise. A further discussion on
the colour of the additive noise can be found in [4]. It should
be stressed that the frequency shifting functions for differ-
ent crystalline structures are, in general, different. We note,
that (3) will be equally true for samples containing two or
more different quadrupolar nuclei whose resonance frequen-
cies happen to lie within the measured frequency range.

3. THE FHETAML DETECTOR

Let

yNM =
[

yT
N(0) . . . yT

N(M−1)
]T

= Ωgγ +wNM, (4)

whereyN(m) = [ym(t0), . . . ,ym(tN−1)]
T is themth echo of the

echo train,wNM is defined similar toyNM exceptwN(m) =
[w(t0 + mµ), . . . ,w(tN−1 + mµ)]T , Ω is an NM-by-P matrix
(where each column represents a different polymorph) de-
fined by

Ω = [ vec[Ξ1] . . . vec[ΞP] ] (5)

Ξp = A
(p)

τ ,β (p)Q
(p) (6)

gγ = [ ργ1 . . . ργP ]
T

, (7)

where the operation vec[X] stacks the columns of matrixX
on top of each other, and for thepth polymorph

A
(p)

τ ,β (p) = B
(p)
τ ⊙Sβ (p) (8)

Sβ (p) =











S(p)
1,t0

· · · S(p)

d(p),t0
...

.. .
...

S(p)
1,tN−1

· · · S(p)

d(p),tN−1











(9)

S(p)
k,t = e−β (p)

k |t−tsp| (10)

B
(p)
τ =









ζ t0
p,1 · · · ζ t0

p,d(p)

...
. ..

...
ζ tN−1

p,1 · · · ζ tN−1

p,d(p)









(11)

ζp,k = eiω(p)
k (τ)−η(p)

k (τ) (12)

Q(p) =
[

Ψ(p)
0 . . . Ψ(p)

M−1

]

(13)

Ψ(p) =
[

ψ(p)
1 . . . ψ(p)

d(p)

]T
(14)

ψ(p)
k = κ(p)

k e−η(p)
k (τ)mµ (15)

with (·)T and⊙ denoting the transpose and Schur-Hadamard
(elementwise) product, respectively. As is well known, the
maximum likelihood estimator is found as (see, e.g., [8])

θ̂ = argmin
θ

‖ yNM −Ωgγ ‖
2
Rw

, (16)

where‖U‖2
W = U∗W−1U, and

θ =
[

ρ γ τ β (1) . . . β (P)
]T

, (17)

whereγ = [γ1, . . . ,γP], andβ (p) = [β (p)
1 , . . . ,β (p)

d(p) ]. Further,
Rw = E{wNMw∗

NM} denotes the noise covariance matrix,
whereE{·} and(·)∗ denote the expectation and the conjugate
transpose, respectively. AsRw is typically unknown, one is
normally forced to use an estimate ofRw, sayR̂w, in (16).
Such an estimate can be formed in various ways; herein, we
propose using a low-order approximative noise model that is
derived from real noise data [4]. We note that one may form
a whitened version of the data using an inverse filtering op-
eration. As filtering a (damped) sinusoidal signal through a
n-tap linear filter will yield a scaled and phase shifted ver-
sion of the signal, the resulting whitened signal,zÑM, can be
expressed as

zÑM = Ω̃gγ +eÑM, (18)

where theÑM×1 vectoreÑM is a zero-mean complex white
Gaussian noise with varianceσ2

e , with Ñ = N −n, and

Ω̃ =
[

vec[Ξ̃1] . . . vec[Ξ̃P]
]

(19)

Ξ̃p = Ã
(p)

τ ,β (p)Q̃
(p)

, (20)

whereÃ(p)

τ ,β (p) is formed from the last̃N rows ofA(p)

τ,β (p) , and

Q̃
(p)

=
[

Ψ̃(p)
0 . . . Ψ̃(p)

M−1

]

, (21)

where
[

Ψ̃(p)
m

]

k
= κ̃(p)

k e−η(p)
k (τ)mµ , (22)

with [·]k denoting thekth index, and

κ̃(p)
k =







κ(p)
k C

(

λ (p)
k

)

For initial ⌊tsp − t̃0⌋ rows

κ(p)
k C

(

λ̃ (p)
k

)

Otherwise
(23)

where⌊x⌋ denotes the integer part ofx, t̃0 = t0 + n, λ (p)
k =

eiω(p)
k (τ)+β (p)

k −η(p)
k (τ) and λ̃ (p)

k = eiω(p)
k (τ)−β (p)

k −η(p)
k (τ). Fur-

thermore,C(λ (p)
k ) denotes the AR prewhitening filter, de-

fined as

C(z) =
n

∑
k=0

ckz−k, (24)

with n denoting the order of the filter (see [4] for further de-
tails on this model and how to evaluate the AR coefficients).
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We stress that due to the requiredn-tap prewhitening filter,
zÑM will only containÑM samples. Using (18), the minimi-
sation in (16) can be written as

min
θ

∥

∥ zÑM − Ω̃gγ
∥

∥

2
F , (25)

where‖·‖F denotes the Frobenius norm. Assuming the sam-
ple temperature lies in a known temperature range, we may,
using (2), determine the range of frequencies each of the si-
nusoidal components may be present in. Hence, a frequency
selective detector that only considers these frequencies can
be derived. Consider the frequency regions formed by

{

2πk1

Ñ
,
2πk2

Ñ
, . . . ,

2πkL

Ñ

}

, (26)

with k1, . . . ,kL being L given, not necessarily consecutive,
integers selected such that (26) only consists of the possi-
ble frequency grid points for each of the(d(1) + . . .+ d(P))
signal components3; each such region is given by the mini-
mal and maximal frequency values for that component con-
sidering themeasured temperature and the size of the ex-
pected temperature uncertainty region. Denoting the mea-
sured temperaturêτs, and the temperature uncertainty re-
gion∆τs , the minimal and maximal frequency values for each
component can be determined using (2) withτ = τ̂s−∆τs and
τ = τ̂s +∆τs , respectively. It should be stressed that each echo
should be Fourier transformed individually as each refocus-
ing pulse will reinitialise the signal. The Fourier transformed
(prewhitened) data vector for themth echo andkth frequency
bin can be expressed as

Zm
k = v∗

k

(

[ Γ1 . . . ΓP ]gγ
)

+Em
k (27)

Γp = Ã
(p)

τ ,β (p)Ψ̃
(p)
m , (28)

whereEm
k = v∗

ke
m
Ñ

represents thekth frequency bin of the
prewhitened noise sequence associated with themth echo,
em

Ñ
, and

vk =
[

1 wk . . . wÑ−1
k

]T
, (29)

with wk = ei2πk/Ñ . Thus, over the (possibly overlapping) fre-
quency regions of interest, (27) can be expressed as

Zm
L = V∗

L

(

[ Γ1 . . . ΓP ]gγ
)

+Em
L , (30)

where

Zm
L =

[

Zm
k1

. . . Zm
kL

]T
(31)

VL = [ vk1 . . . vkL ] , (32)

and whereEm
L is defined similar toZm

L . Using (30), the data
model for the whole echo train can be expressed as,

ZLM =
[

(Z0
L)T . . . (ZM−1

L )T
]T

= Σgγ +ELM, (33)

whereELM defined similar toZLM, and

Σ =
[

vec
{

V∗
LΞ̃1

}

. . . vec
{

V∗
LΞ̃P

}

]

. (34)

3Excluding frequency grid points of known strong RFI sources.

Using (33), the minimization in (16) can be approximated as

min
θ

‖ ZLM −Σgγ ‖
2
F . (35)

The unstructured least squares estimate ofgγ can be found
as

ĝγ = [Σ∗Σ]−1 Σ∗ZLM = Σ†ZLM, (36)

where (·)† denotes the Moore-Penrose pseudoinverse4. It
should be stressed that as the measured signal is complex,
the unstructured estimate ˆgγ is likely complex too, especially
in the likely case where there are discrepancies between the
model and the measured data. Bearing this in mind, we allow
for a complex scaling, forming the estimate ofγk as

γ̂k =

∣

∣[ĝγ ]k
∣

∣

∑P
k=1

∣

∣[ĝγ ]k
∣

∣

. (37)

where [ĝγ ]k denotes thekth element in ˆgγ . As an alterna-
tive, one might instead form a constraintstructured estimate
of gγ ; however, in our experience, doing so offers no signifi-

cant gain. Inserting ¯gγ = [ γ̂1 . . . γ̂P ]
T into (35), the least

squares estimate ofρ can be found aŝρ = q̃
†
θ̌ZLM, yielding

max
θ̌

Z∗
LMΠq̃θ̌

ZLM , (38)

whereθ̌ =
[

τ β (1) . . . β (P)
]T

, and

q̃θ̌ = Σḡγ (39)

Πq̃θ̌
= q̃θ̌ q̃

†
θ̌ (40)

We note that from a computational view, one should exploit

the fact that the indices ofV∗
LΓp = V∗

LÃ
(p)

τ ,β (p)Ψ̃
(p)
m form geo-

metric series; thegth index ofV∗
LΓp can be written as

[V∗
LΓp]g =

d(p)

∑
l=1

G(p)
l

(

Ω(p)
1,l,g +Ω(p)

2,l,g

)

, (41)

where

G(p)
l = κ(p)

l e[iω(p)
l (τ)−η(p)

l (τ)]t̃0−η(p)
l (τ)mµ (42)

Ω(p)
1,l,g = C(λ (p)

l )eβ (p)
l (t̃0−tsp)ϒvp,l,g (43)

ϒvp,l,g =
(1− v

⌊tsp−t̃0⌋+1
p,l,g )

1− vp,l,g
(44)

Ω(p)
2,l,g = C(λ̃ (p)

l )e−β (p)
l (t̃0−tsp)ϒup,l,g (45)

ϒup,l,g =
u
⌊tsp−t̃0⌋+1
p,l,g −utN−1−t̃0+1

p,l,g

1−up,l,g
(46)

4We have here assumed that theP polymorphs differ sufficiently to en-
sure the invertability of[Σ∗Σ] in (36). To the best of our knowledge, this will
be the case for all known substances, but we note that should the matrix be
poorly conditioned, one can instead form a low-rank approximation of the
inverse (see, e.g., [9]).
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Figure 1: The ROC curves comparing the FHETAML-p,
FHETAML-a, FETAML-a and ETAML-a detectors for par-
tially shielded measured data.

up,l,g = e−i2πkg/Ñ+iω(p)
l (τ)−η(p)

l (τ)−β (p)
l (47)

vp,l,g = e−i2πkg/Ñ+iω(p)
l (τ)−η(p)

l (τ)+β (p)
l . (48)

Using theθ̌ maximising (38), the test statistic is formed as

T (ZLM) = (LM−1)
Z∗

LMΠq̃θ̌
ZLM

Z∗
LM(I−Πq̃θ̌

)ZLM
. (49)

Using (49), the signal component is deemed present if and
only if

T (ZLM) > ϑ , (50)

and otherwise not, whereϑ is a predetermined threshold
value reflecting the acceptable probability of false alarm.
To reflect that the resulting detector is a generalisation of
the FETAML detector introduced in [6], we denote the here
proposed detector the Frequency selective Hybrid ETAML
(FHETAML) detector. To guarantee accurate estimates of
all parameters, the full multidimensional minimisation de-
scribed by (35) should be performed. Finding the multi-
dimensional minimum using a grid search would require a
quite dramatic complexity. As noted in [4–6], one can of-
ten, without significant loss in detector performance, use the

approximations5 β (p)
k ≈ β (p)

0 andη(p)
k ≈ η(p)

0 , enabling the
maximisation oveřθ for a single polymorph to be approxi-

mated with the maximisation overθ̌ approx =
[

τ,β (p)
0 ,η(p)

0

]

,

being formed using three 1-D searches. Similarly, one can
here form an approximation using (2P+1) 1–D searches over

θ̌ approx =
[

τ,β (1)
0 , . . . ,β (P)

0 ,η(1)
0 , . . . ,η(P)

0

]

. The (approxi-

mative) generalised likelihood ratio test can be formed using
the obtained estimatěθ approx in place ofθ̌ in (49). This ap-

5As shown in [6], one can in cases where the temperature shifting func-

tion of η(p)
k (τ) is not fully known, instead treatη(p)

k (τ) as a determinis-

tic constant, using the approximationη(p)
k (τ) ≈ η(p)

k . In our experience,
there is no significant loss by using this approximation and searching for

η(p)
k , as compared to exploiting the temperature shifting functions. As this

approximation allows for not performing the full (rather time consuming)
temperature shifting mapping, we will, when appropriate, hereafter use this
approximation.
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Figure 2: The ROC curves comparing the FSAML, AML,
DMA-p, DMA-r and DMA-s detectors for partially shielded
measured data.

proximative detector is termed the FHETAML-a detector6.
However, in our experience, the joint search space over the
common (sinusoidal and echo train) damping constants will
not decouple fully. As a result, one should rather form a com-
monP–D search space over theP common sinusoidal damp-
ing constants, and similarly aP–D search space over theP
common echo train constants. We term the resulting approx-
imate detector, first forming a 1–D search over temperature,
followed by aP–D search over the common sinusoidal damp-
ing constants and aP–D search over echo damping constants,
respectively, the FHETAML-p detector.

4. NUMERICAL EXAMPLES

Herein, as an illustration of the applicability of NQR to poly-
morph detection, we will investigate the detection of TNT
using the proposed detector7. TNT is a common explosive in
landmines and currently poses a great challenge for the de-
tection of landmines using NQR. Detection of TNT is com-
plicated by the existence of at least two polymorphic forms,
monoclinic and orthorhombic, with different NQR proper-
ties, e.g., different temperature shifting functions [10]. Land-
mines often contain a mixture of these two forms, the pro-
portions of which can vary between landmines (and over
time in a given landmine) as the metastable orthorhombic
form may change slowly to the more stable (at room tem-
perature) monoclinic phase. Herein, we will limit our atten-
tion to examine two of the polymorphic forms of TNT, i.e.,
P = 2, namely the monoclinic (p = 1) and the orthorhombic
(p = 2) polymorphs. As detection is the problem of interest,
the FHETAML-p and -a implementations were compared to
the ETAML-a, FETAML-a, AML, FSAML, DMA-p, DMA-r
and DMA-s detectors described in [4–6, 11]. The com-
monly used demodulation approach (DMA) measures the re-
sponse of a singlea priori known resonance frequency, with

6In naming the FHETAML-a detector, we have followed the naming con-
ventions used for naming the different ETAML/FETAML detectors intro-
duced in [6].

7The authors are grateful to Dr. Jamie Barras and Dr. Mike Rowe at
King’s College London for their invaluable help in the NQR laboratory, to
Ms Kate Long at DSTL for making the mixed TNT sample available, and to
Dr. Kaspar Althoefer for his continuing support for the project.
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DMA-p assuming perfect temperature knowledge. Further-
more, DMA-r assumes a more realistic temperature knowl-
edge, using temperature values taken from a random vari-
able, uniformly distributed over the interval[τ − 5,τ + 5],
where τ is the measured ambient temperature . Finally,
DMA-s allows for a search in the relevant frequency region.
All of the approximate maximum likelihood (AML) based
techniques exploit the temperature dependencies of the sinu-
soidal components. The AML and FSAML detectors exploit
the fine structure of the echo, hence, the AML, FSAML and
DMA detectors are herein, applied to the summed echo train,
formed by adding all theM consecutive echoes [4, 5, 11].
The ETAML and FETAML detectors exploit the tempera-
ture dependent spin-echo decay time, i.e. the fine struc-
ture of the echo train, hence, the FHETAML, ETAML and
FETAML detectors are formed on the full echo train [6].
Furthermore, the AML, FSAML, ETAML, FETAML and
DMA detectors were set-up assuming the sample was mon-
oclinic TNT. The performance of the detectors is evaluated
using measured NQR data, measured at King’s College Lon-
don. The measured data consisted of 1000 data files, 500
with TNT and 500 without, each containing four summed
echo trains. The data was collected in a partially shielded
environment, to allow for the typical practical case where
some residual RFI remains. The sample, taken from an east-
ern European mine, weighed 500g and contained a mixture
of monoclinic/orthorhombic TNT8. The temperature of the
sample was not artificially controlled, to allow for the real-
istic case where temperature fluctuations would exist; how-
ever, the ambient air temperature was measured as 301K.
The frequency shifting function constants for thed(2) = 4 or-

thorhombic lines area(2)
1 = 891.021,a(2)

2 = 874.876,a(2)
3 =

891.613, a(2)
4 = 872.054 (all a(p)

k in kHz), b(2)
1 = 0.1454,

b(2)
2 = 0.0963,b(2)

3 = 0.1692 andb(2)
4 = 0.1184 (allb(p)

k in
kHzK−1). The corresponding constants for monoclinic TNT
can be found in [4, 6]. The a priori magnitude scalings, ob-
tained from a pure monoclinic sample, for monoclinic TNT

are|κ(1)
1 | = 0.3, |κ(1)

2 | = 0.8, |κ(1)
3 | = 1.0 and|κ(1)

4 | = 0.65.
The a priori complex scalings for the orthorhombic lines, ob-
tained from a pure monoclinic sample and predominantly or-

thorhombic sample, are|κ(2)
1 |= 0.3, |κ(2)

2 |= 0.6, |κ(1)
3 |= 1.0

and |κ(1)
4 | = 0.1. To account for temperature uncertainties,

the AML-based detectors and the DMA-s detector use a
search region over temperature of [290,310]K (in 100 steps).
All the AML-based algorithms allow for uncertainties in the
NQR sinusoidal damping parameters, and the ETAML, FE-
TAML and FHETAML allow for uncertainties in the NQR
echo damping parameters, by using the following search re-

gions; the common sinusoidal damping parameters,β (1)
0 and

β (2)
0 , used searches of [0.001,0.1] in 100 steps; the common

echo damping parameters,η(1)
0 and η(2)

0 , used searches of
[0.0001,0.0004] in 100 steps. It is stressed that these search
spaces cover a large range of parameter values, and that in
practice the range of these searches should be significantly
more restricted given typical prior knowledge about the sam-
ple temperature, sinusoidal damping parameters and echo
damping parameters. This will further improve the perfor-

8Inspection of the spectrum for this sample, reveals that it ispredomi-
nantly orthorhombic TNT.

mance of all the AML based methods. We chose not to
restrict our searches, in order to represent the worst case,
where little is known about the NQR parameters. As detec-
tion is the problem of interest, we proceed to examine the
receiver operator characteristic (ROC) curves for the detec-
tors. Figures 1–2 show the ROC curves of the detectors, for
the measured data set (described earlier). The figures clearly
show the beneficial performance of the hybrid detectors over
the other detectors. The FHETAML-p performs slightly bet-
ter than FHETAML-a (although this is difficult to see from
the printed figure), however, both perform significantly better
than the non-hybrid detectors.

REFERENCES

[1] A. N. Garroway, M. L. Buess, J. B. Miller, B. H. Suits,
A. D. Hibbs, A. G. Barrall, R. Matthews, and L. J. Bur-
nett, “Remote Sensing by Nuclear Quadrupole Reso-
nance,”IEEE Trans. Geoscience and Remote Sensing,
vol. 39, no. 6, pp. 1108–1118, June 2001.

[2] R. M. Deas, I. A. Burch, and D. M. Port, “The Detec-
tion of RDX and TNT Mine like Targets by Nuclear
Quadruple Resonance,” inDetection and Remediation
Technologies for Mines and Minelike Targets, Proc. of
SPIE, vol. 4742, 2002, pp. 482–489.

[3] E. Balchin, D. J. Malcolme-Lawes, I. J. F. Poplett,
M. D. Rowe, J. A. S. Smith, G. E. S. Pearce, and
S. A. C. Wren, “Potential of Nuclear Quadrupole Res-
onance in Pharmaceutical Analysis,”Analytical Chem-
istry, vol. 77, pp. 3925–3930, 2005.

[4] A. Jakobsson, M. Mossberg, M. Rowe, and J. Smith,
“Exploiting Temperature Dependency in the Detection
of NQR Signals,” to appear inIEEE Transactions on
Signal Processing.

[5] A. Jakobsson, M. Mossberg, M. Rowe, and J. A. S.
Smith, “Frequency Selective Detection of Nuclear
Quadrupole Resonance Signals,”IEEE Trans. Geo-
science and Remote Sensing, vol. 43, no. 11, pp. 2659–
2665, November 2005.

[6] S. D. Somasundaram, A. Jakobsson, J. A. S. Smith,
and K. Althoefer, “Exploiting Spin Echo Decay in the
Detection of Nuclear Quadrupole Resonance Signals,”
submitted toIEEE Trans. Geoscience and Remote Sens-
ing.

[7] J. A. S. Smith and M. D. Rowe, “NQR Testing Method
and Apparatus,”Patent WO9945409, 1999.

[8] P. Stoica and R. Moses,Spectral Analysis of Signals.
Upper Saddle River, N.J.: Prentice Hall, 2005.

[9] G. H. Golub and C. F. V. Loan,Matrix Computations,
3rd ed. The John Hopkins University Press, 1996.

[10] R. M. Deas, M. J. Gaskell, K. Long, N. F. Peirson,
M. D. Rowe, and J. A. S. Smith, “An NQR Study of the
Crystalline Structure of TNT,” inDetection and Reme-
diation Technologies for Mines and Minelike Targets,
Proc. of SPIE, vol. 5415, 2004, pp. 510–520.

[11] Y. Tan, S. L. Tantum, and L. M. Collins, “Cramer-Rao
Lower Bound for Estimating Quadrupole Resonance
Signals in Non-Gaussian Noise,”IEEE Signal Process-
ing Letters, vol. 11, no. 5, pp. 490–493, May 2004.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


