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ABSTRACT filtering algorithm is described in Section 3. The results of

he KM filter applied to speech are discussed followed by a

ombined approach using PD as a preprocess. Finally the
ect of LP order on the algorithm is described in Section 4.

A predictive deconvolution, based on the linear predictivet
(LP) residual of speech, is used to extract an estimate of th
inverse of the minimum phase component of a room impulsg
response. This inverse is applied as a prefiltering stage to

kurtosis maximizing (KM) adaptive filter to equalise the re- 2. PREDICTIVE DECONVOLUTION FOR SPEECH
maining non-minimum phase component. It was found thap\ speech signal recorded in an enclosed spdng can be
this improved the stability and performance of the KM filter modelled as the convolution of a speech sigsta) with a
for male speech but it was found that when the first stage LRnite room impulse responge(n) of lengthN such that
order was increased the performance improved for both male
and female speech.

N—-1
x(n) = %hr(k)s(n— k) (1)
1. INTRODUCTION k=

Linear Prediction (LP) has been used extensively for blindvhich can be represented in thelomain as
deconvolution in the field of geophysics and speech coding.
In geophysicpredictive deconvolutio(PD) is used to obtain X(2) = Hi (2)S(2)
an estimate of a layered earth model from seismic readings
[1] while in speech coding it is used to model a time-varyingFor the purposes of this paper it is assumed thdn) is
vocal tract function [2]. However, its use in the field of aseu time invariant and that, for the applications considereisa
tic dereverberation has been minimal due to the mixed-phage below percievable levels and therefore ignored. It id wel
nature of rooms. understood that a speech signal can be modelled as an excita-
Recent techniques for speech dereverberation, in whiction signalu(n) convolved with a time-varying all-pole filter
an attempt is made to recover the anechoic speech sign#those short-time transfer functisy(z) is given as [2]
have used higher order adaptive filtering. Gillespie et3l. [
outlined a kurtosis maximization adaptive filtering algom Hs(z) = 6
for the dereverberation of speech using a Modulated Com- 1— zsﬂfechakfk
plex Lapped Transform (MCLT) subband filter. In this the B
subband filter coefficients were adapted to maximise the kukyhereG is a gain parameter anhy} a vector of all-pole
tosis of the LP residual. A significant reduction for pereeiv filter coefficients of lengttPs peechWhere Pspeechis typically
reverberation was reported. However the authors found th@fetween 10 and 20 for speech coding. Speech is assumed
use of the kurtosis maximization required a large amount ofo be a stationary signal over a short time period, typically
data and often resulted in unstable adaptation that wasyhigh2oms, and the model can thus be applied on a block-by-block
dependant on the room impulse response. basis. The output signal in each block can be modelled in the
Most room transfer functions are often non-minimumzdomain as
phase due to the late energy in the room impulse response
(RIR) [4, 5] but can be modelled as the convolution of an X(2) = H(2)S(2)
equivalent minimum phase component with an all-pass com- = H (2)Hs(2)U (2)
ponent. In this paper a technique is outlined that exploits
the minimum phase, all-pass model of room reverberationwhere H, (z) is the room transfer function arld(z) is the
A primary stage is proposed that extracts a minimum phasspeech excitation signal.
estimation of the room impulse response using high order It can be assumed that the period corresponding to the
predictive deconvolution. The resulting coefficients appr  first 50ms of the RIR is perceived as part of the direct speech
mate the inverse of an all-pole room model [6] that is appliesignal [7, 8]. Therefore, by performing a short block-based
to speech as a prefilter before use with the kurtosis maxiinear prediction ¢hort LPblock in Figure 1) the short-time
mization (KM) adaptive filtering algorithm stage. It has bee transfer functiorHs(z) can be removed without affecting the
found that by decomposing the deconvolution in this mannetomponent oH, (z) perceived as reverberation. The result-
the overall performance is improved as well as the stabilitying LP residual signak(h) will approximate the excitation
of the kurtosis maximization stage. signalu(n) convolved with the room impulse resporsén)
In this paper predictive deconvolution for speech is de{the hat notation is used to indicate the short-time LP resid
scribed in Section 2 then the kurtosis maximization adaptivual).
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Figure 1:Predictive deconvolution for reverberant speech.

The room transfer functioh{r(z) is often non-minimum Figure 2:Kurtosis maximization of speech LP residual.
phase [8, 5] but can be modelled as the product of an equiv-

alent minimum phase componenf""(z) and all-pass com- o ] ] ) ]
ponentH?P(2) [5]: adaptive filter fulfils this requirement allowing for an asal

filter to equalise the maximum phase room component.
_ min ap The update equation for a kurtosis maximizing adaptive
Hi(2) = H(2H () filter with coefficientsw(n) at timen is given as

By assuming that the speech excitation sigm@) approx-

imates a white noise process and the reverberated LP resid-
ualX(n) is a stationary stochastic process, performing a seGypere
ond linear prediction on a longer sequence@f) will give

the all-zero systenA(z) whose coefficients approximate the

w(n+1) =w(n)+ puf(n)x(n)

: 2(n) 1 §2(n) —E {y y

reciprocal of an all-pole model di™"(z) with parameters 4 E{yz(n)}y (n) E{y“(n)} y(m

a, k=1,---,Pong[6] such that f(n) = E3{y(n)} @)
HMN(Z) ~ G G in which u is the adaptive step-sizé(n) is a feedback func-

1+3az* A2 tion given by (2),%(n) is the LP residual input vector and
the outputy(n) = w' (n)%(n). The termsE {y?(n)} and

The resulting syster\(z) is then applied as an FIR filter to E {y*(n)} are estimated recursively as

the reverberant speech sigmxéh) thereby deconvolving the

minimum phase component of the RIR. E{y’(n)} = BE{¥?(n—1)} + (1— B)¥?(n
Although the RIR sequence is often very long (e.g. 4000 {A () i 3+ A
samples for a reverberation time of 0.5s and 8kHz sam- E{y*(n)} = BE{Y (n—1)} +(1-B)¥*(n)

pling rate) fewer coefficients are required for an all-pole . _ .
room model and although; (z) will contain poles and mixed with B controlling the smoothness of the estimates [3].

phase zeros, with a high enough prediction order the aé-pol The subband structure is implemented using the Modu-
model will give a good approximation &f™" [6]. lated Complex Lapped Transform (MCLT). The implemen-

The filter coefficients of\(z) are found by calculating the t&tion updates are identical except that the update fumctio
autocorrelation sequenqex((n; of the short-time LP resid- [ (1) is calculated from an output block in the MCLT domain.
ual X(n) and solving for the coefficients using the Levinson-':'%li)re 2dshov]\c/_|s a blpﬁkﬁ'atﬂrarE tr)epredserr]ltatlon of th; MICLT
Durbin recursion algorithm. This allows for the efficient so SUPband KM filter with the block-based short LP residual ex-

lution of very large order predictions. This process is in-Iraction as the first stagsf{ort LF) andIMCLT representing
dicated bylong LP block in Figure 1. A(z), the estimated the inverse MCLT.
inverse ofH™"(z) is then applied as an FIR filter. The esti-
mation ofA(z) can be improved by increasing the length of
the autocorrelation sequence. For this reason the catmulat An experiment was carried out to measure the performance
of A(2) is doneoff-line. of this algorithm using male and female speech samples and
The technique used for extracting an estimate of the ina simulated room impulse response. Speech samples were
verse of the minimum phase component of the RIR outlinedaken from audio book CDs that were judged to be practi-
above can be illustrated by the block diagram shown in Figcally anechoic. These had a sampling rate of 44.1kHz and
ure 1 where the input(n) is the recorded speech signal given Were decimated to 11025Hz. A non-minimum phase room
by (1), X(n) is the LP speech residuahCF represents au- impulse response was synthesised using the image method
tocorrelation calculation ang(n) the autocorrelation se- [9]to model alarge sized room with dimensions 16m by 10m

3.1 KM applied to single channel speech

quence ok(n). and height 9m in the,y andz directions and a reverberation
time of approximately 0.5s. Source and receiver coordinate
3. SUBBAND KURTOSIS MAXIMIZATION in metres werg2,5,2] and[6,5,1.7] respectively. Figure 3
ADAPTIVE FILTERING shows the resulting room impulse response. The number of

MCLT subband# is 1024 with a single tap in each subband
Since the predictive deconvolution stage outlined aboxe-is adaptive filter.
stricted to suppressing only the minimum phase component The short-time LP residual was calculated with a pole or-
of the RIR a second stage capable of dealing with the remairder Pspeecrof 20 and an overlapping window of 256 samples
ing mixed-phase system is needed. A kurtosis maximizingnd hop size of 128. The filter performance was measured
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Figure 4: Dereverberation performance of the KM adaptive filter for male dpeeéth in-
creased iteration for values pf and3: (a) B8 is constant at 0.995 and varied, (b) constant
step-sizeu = 3x 10~° andp varied.

‘ ‘ ‘ ‘ ‘ ] By plottingIkm against iteration the behaviour of the KM

] adaptive filter could be monitoréd It was found that the

] stability of the KM adaptive filter was greatly dependent on

the values ofu and3. While certain combinations gave an

improved dereverberation performance they often extdbite

divergence. By varying botp € {1,2,---,10} x 10~° and

B € {0.99,0.991 ---,0.999} optimal values could be esti-

l mated. For male speech the optimal values for this specific

] RIR were estimated gg = 3 x 10°° and 8 = 0.995. Fig-

ure 4 shows two three-dimensional plots illustrating derev

beration performance with varied step-sigeand moment

] smoothing constan. The instability of the KM filter can

ML i = be seen on the right-hand-side of each plot after an optimal
Tine @ performance has been reached.
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Figure 3:Image method synthesised room impulse response. 3 5 pregictive deconvolution as a KM prefiltering stage

_ o The predictive deconvolution stage was tested as a prefilter
by calculating the reduction in reverberant energy when théng stage to the kurtosis maximization filter (Figure 5). The
resultl_ng filter impulse response(n) was applied to th_e same speech samples were processed using the steps outlined
room impulse response. The reverberant error energy in tha Section 2 (marke&tage 1in Figure 5) and passed through

equalised system can be calculated as the resulting FIR filter. The outputn) was used as the input
) ) to the KM adaptive filter. Both short LP residual extraction
R, — 20 |c(n)|= — max|c(n)| (3) stagesghort LP landshort LP 2in Figure 5) had the same
max|c(n)|2 parameters as in the previous experiment.

The autocorrelation sequence was calculated from 60s of
LP residual speech (661500 samples) and the predictive filte
c(n) = he (n) «w(n) IengthHong.chosen as 2500, agapeect= 20. The resulting
reverberation reduction before the KM stage was found to
(x denotes convolution). The maximum valuecos the di-  be approximatelypp = —0.7dB for male speech. The KM
rect signal component. The reverberant error enggyn  processing stage was applied using the same parameters. The
the original room impulse response vectgris calculated complete equalised system was calculated after eachidterat
in a similar manner where the maximum valueh6fi) is the — as

wherec(n) is the equalised system vector given by

direct signal component. The overall reduction in reverber c(n) = hr(n) * (aavg(N) *W(N))
ant error energy in decibels or dereverberation performanc )
is then and the performance calculated as per Equations (3-4). The

impulse response(n) of the KM filter was used in a second

1(dB) = 10log,o{Rc} — 1010g o{Rn} (4)
1The subscripKM indicates the performance is measured forkhe

such that = 0 indicates no net improvement in reverberantyosis maximizatiostage only.PD represents theredictive deconvolution
energy. stage andDKM indicates the combined approach.
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Figure 5: Block diagram showing predictive deconvolution stage
as preprocess to the KM adaptive filter. Ppeccn

The resulting adaptive filter performance is plotted onFigure 7:PD performance against pole order for male and female
Figure 6 alongside th&M only results (dotted and dot- speech.
dashed lines respectively). From these it can be seen that
the combined filter converges faster and gives better perfor
mance for male speech with a reverberation reduction of afemale speech. The optimum order was found to be approx-

mostlppkym = —4dB.

3re T

Female speech, PDKM
-

imately Pspeech= 80. When the KM stage is subsequently
applied as in Figure 5 (WitRspeech = 80 andPspeech = 20)

and significant improved is achieved. Table 1 shows the re-
verberant energy reduction achieved using predictive meco
volution, kurtosis maximization and the combined PD-KM

approach for male and female speech with this prediction or-

LETS.

o 1 I‘-""\ . i der.

g N Pspeech lkm  Ipp  IpDKM

Bl S~ Male 20 1.4 22 3.9
I i rr | Female 20 1.4 3.0 0.0
£ iAo caszoroa: Male 80 -15 -23 -4.1
3 ' Female 80 -1.4 -25 -4.0

Table 1: Change in reverberatant energy (dB) achieved for
Pspeecm-

-3+

v, . Male speech, PDKM
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w0 o0 o A spectrogram of clean, reverberated and PDKM dere-
verberated male speech is shown in Figure 8. This clearly
Figure 6: Dereverberation performance for male and femaleshows the improved resolution of harmonics for dereverber-

speech using the KM adaptive filter only and with Predictive de-atecj speech although there is some loss in temporal definitio

speechiKM only), - - - male speech (combind/?DKM), - — - female

speech (combineBDKM). 5. CONCLUSIONS

In this paper a blind dereverberation technique was prapose
to improve upon the performance of the kurtosis maximizing
4. BFFECT OSI\'TIEES;FSJQI\GAE\"EEPARAMETERS subband adaptive filtering algorithm [3]. The mixed phase
model of the room transfer function was exploited in which
The KM adaptive filter and combined PDKM processes were prefiltering stage to the kurtosis maximizing filter wasduse
applied to female speeech using the same parameters tasestimate the inverse of the minimum phase component.
above. It can be seen from Figure 6 that with the use oThis stage is a one time FIR filter whose coefficients are
the predictive deconvolution stage the result is actually i found using a high order predictive deconvolution on se-
ferior to that achieved using KM alone. It was found thatquences of LP speech residual. The stability behavioureof th
the performance of the algorithm was affected by the first LRKM algorithm was investigated and optimum values for the
residual extraction ordd¥peecy (labelledshort LP 1in Fig-  update step step size and moment smoothing constafit
ure 5) — the dereverberation performance for the predictivevere determined. It was then found that, for male speech, an
deconvolution stage was measured for value®glecp € improved reduction in reverberant energy could be achieved
{10,20,---,100} (an increased frame size of 512 samplesusing the combined technique over KM alone.
was used). The resultis plotted for male and female speech in It was then shown that the performance was dependent on
Figure 7. From this it can be seen that the PD performance the prediction ordePspeecy Of the first short LP residual ex-
improved with increased predictor order, significanityso f traction and that significant improvements were gained when
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Figure 8: Spectrograms of (a) clean, (b) reverberated grildliKM dereverberated male speech.

Pspeech Was increased, in particular for female speech. Itis
suggested that the stability of the KM filter is also improved
by utilizing the predictive deconvolution stage.
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