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ABSTRACT

A predictive deconvolution, based on the linear predictive
(LP) residual of speech, is used to extract an estimate of the
inverse of the minimum phase component of a room impulse
response. This inverse is applied as a prefiltering stage to a
kurtosis maximizing (KM) adaptive filter to equalise the re-
maining non-minimum phase component. It was found that
this improved the stability and performance of the KM filter
for male speech but it was found that when the first stage LP
order was increased the performance improved for both male
and female speech.

1. INTRODUCTION

Linear Prediction (LP) has been used extensively for blind
deconvolution in the field of geophysics and speech coding.
In geophysicspredictive deconvolution(PD) is used to obtain
an estimate of a layered earth model from seismic readings
[1] while in speech coding it is used to model a time-varying
vocal tract function [2]. However, its use in the field of acous-
tic dereverberation has been minimal due to the mixed-phase
nature of rooms.

Recent techniques for speech dereverberation, in which
an attempt is made to recover the anechoic speech signal,
have used higher order adaptive filtering. Gillespie et al. [3]
outlined a kurtosis maximization adaptive filtering algorithm
for the dereverberation of speech using a Modulated Com-
plex Lapped Transform (MCLT) subband filter. In this the
subband filter coefficients were adapted to maximise the kur-
tosis of the LP residual. A significant reduction for perceived
reverberation was reported. However the authors found that
use of the kurtosis maximization required a large amount of
data and often resulted in unstable adaptation that was highly
dependant on the room impulse response.

Most room transfer functions are often non-minimum
phase due to the late energy in the room impulse response
(RIR) [4, 5] but can be modelled as the convolution of an
equivalent minimum phase component with an all-pass com-
ponent. In this paper a technique is outlined that exploits
the minimum phase, all-pass model of room reverberation.
A primary stage is proposed that extracts a minimum phase
estimation of the room impulse response using high order
predictive deconvolution. The resulting coefficients approxi-
mate the inverse of an all-pole room model [6] that is applied
to speech as a prefilter before use with the kurtosis maxi-
mization (KM) adaptive filtering algorithm stage. It has been
found that by decomposing the deconvolution in this manner
the overall performance is improved as well as the stability
of the kurtosis maximization stage.

In this paper predictive deconvolution for speech is de-
scribed in Section 2 then the kurtosis maximization adaptive

filtering algorithm is described in Section 3. The results of
the KM filter applied to speech are discussed followed by a
combined approach using PD as a preprocess. Finally the
effect of LP order on the algorithm is described in Section 4.

2. PREDICTIVE DECONVOLUTION FOR SPEECH

A speech signal recorded in an enclosed spacex(n) can be
modelled as the convolution of a speech signals(n) with a
finite room impulse responsehr(n) of lengthN such that

x(n) =
N−1

∑
k=0

hr(k)s(n−k) (1)

which can be represented in thez-domain as

X(z) = Hr(z)S(z)

For the purposes of this paper it is assumed thatHr(n) is
time invariant and that, for the applications considered, noise
is below percievable levels and therefore ignored. It is well
understood that a speech signal can be modelled as an excita-
tion signalu(n) convolved with a time-varying all-pole filter
whose short-time transfer functionHs(z) is given as [2]

Hs(z) =
G

1−∑
Pspeech
k=1 αkz−k

whereG is a gain parameter and{αk} a vector of all-pole
filter coefficients of lengthPspeechwherePspeechis typically
between 10 and 20 for speech coding. Speech is assumed
to be a stationary signal over a short time period, typically
20ms, and the model can thus be applied on a block-by-block
basis. The output signal in each block can be modelled in the
z-domain as

X(z) = Hr(z)S(z)

= Hr(z)Hs(z)U(z)

whereHr(z) is the room transfer function andU(z) is the
speech excitation signal.

It can be assumed that the period corresponding to the
first 50ms of the RIR is perceived as part of the direct speech
signal [7, 8]. Therefore, by performing a short block-based
linear prediction (short LPblock in Figure 1) the short-time
transfer functionHs(z) can be removed without affecting the
component ofHr(z) perceived as reverberation. The result-
ing LP residual signal ˆx(n) will approximate the excitation
signalu(n) convolved with the room impulse responsehr(n)
(the hat notation is used to indicate the short-time LP resid-
ual).
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Figure 1:Predictive deconvolution for reverberant speech.

The room transfer functionHr(z) is often non-minimum
phase [8, 5] but can be modelled as the product of an equiv-
alent minimum phase componentHmin

r (z) and all-pass com-
ponentHap

r (z) [5]:

Hr(z) = Hmin
r (z)Hap

r (z)

By assuming that the speech excitation signalu(n) approx-
imates a white noise process and the reverberated LP resid-
ual x̂(n) is a stationary stochastic process, performing a sec-
ond linear prediction on a longer sequence of ˆx(n) will give
the all-zero systemA(z) whose coefficients approximate the
reciprocal of an all-pole model ofHmin

r (z) with parameters
ak, k = 1, · · · ,Plong [6] such that

Hmin
r (z) ≈

G

1+∑
Plong
k=1 akz−k

=
G

A(z)

The resulting systemA(z) is then applied as an FIR filter to
the reverberant speech signalx(n) thereby deconvolving the
minimum phase component of the RIR.

Although the RIR sequence is often very long (e.g. 4000
samples for a reverberation time of 0.5s and 8kHz sam-
pling rate) fewer coefficients are required for an all-pole
room model and althoughHr(z) will contain poles and mixed
phase zeros, with a high enough prediction order the all-pole
model will give a good approximation ofHmin

r [6].
The filter coefficients ofA(z) are found by calculating the

autocorrelation sequenceγxx(n) of the short-time LP resid-
ual x̂(n) and solving for the coefficients using the Levinson-
Durbin recursion algorithm. This allows for the efficient so-
lution of very large order predictions. This process is in-
dicated bylong LP block in Figure 1. A(z), the estimated
inverse ofHmin

r (z) is then applied as an FIR filter. The esti-
mation ofA(z) can be improved by increasing the length of
the autocorrelation sequence. For this reason the calculation
of A(z) is doneoff-line.

The technique used for extracting an estimate of the in-
verse of the minimum phase component of the RIR outlined
above can be illustrated by the block diagram shown in Fig-
ure 1 where the inputx(n) is the recorded speech signal given
by (1), x̂(n) is the LP speech residual,ACF represents au-
tocorrelation calculation andγxx(n) the autocorrelation se-
quence of ˆx(n).

3. SUBBAND KURTOSIS MAXIMIZATION
ADAPTIVE FILTERING

Since the predictive deconvolution stage outlined above isre-
stricted to suppressing only the minimum phase component
of the RIR a second stage capable of dealing with the remain-
ing mixed-phase system is needed. A kurtosis maximizing

Figure 2:Kurtosis maximization of speech LP residual.

adaptive filter fulfils this requirement allowing for an acausal
filter to equalise the maximum phase room component.

The update equation for a kurtosis maximizing adaptive
filter with coefficientsw(n) at timen is given as

w(n+1) = w(n)+ µ f (n)x̂(n)

where

f (n) =

4

[

E
{

ŷ2(n)
}

ŷ2(n)−E
{

ŷ4(n)
}

]

ŷ(n)

E3
{

ŷ(n)
} (2)

in which µ is the adaptive step-size,f (n) is a feedback func-
tion given by (2),x̂(n) is the LP residual input vector and
the output ˆy(n) = w

T(n)x̂(n). The termsE
{

ŷ2(n)
}

and
E

{

ŷ4(n)
}

are estimated recursively as

E
{

ŷ2(n)
}

= βE
{

ŷ2(n−1)
}

+(1−β )ŷ2(n)

E
{

ŷ4(n)
}

= βE
{

ŷ4(n−1)
}

+(1−β )ŷ4(n)

with β controlling the smoothness of the estimates [3].
The subband structure is implemented using the Modu-

lated Complex Lapped Transform (MCLT). The implemen-
tation updates are identical except that the update function
f (n) is calculated from an output block in the MCLT domain.
Figure 2 shows a block diagram representation of the MCLT
subband KM filter with the block-based short LP residual ex-
traction as the first stage (short LP) andIMCLT representing
the inverse MCLT.

3.1 KM applied to single channel speech

An experiment was carried out to measure the performance
of this algorithm using male and female speech samples and
a simulated room impulse response. Speech samples were
taken from audio book CDs that were judged to be practi-
cally anechoic. These had a sampling rate of 44.1kHz and
were decimated to 11025Hz. A non-minimum phase room
impulse response was synthesised using the image method
[9] to model a large sized room with dimensions 16m by 10m
and height 9m in thex,y andzdirections and a reverberation
time of approximately 0.5s. Source and receiver coordinates
in metres were[2,5,2] and [6,5,1.7] respectively. Figure 3
shows the resulting room impulse response. The number of
MCLT subbandsM is 1024 with a single tap in each subband
adaptive filter.

The short-time LP residual was calculated with a pole or-
derPspeechof 20 and an overlapping window of 256 samples
and hop size of 128. The filter performance was measured
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Figure 4: Dereverberation performance of the KM adaptive filter for male speech with in-
creased iteration for values ofµ andβ : (a) β is constant at 0.995 andµ varied, (b) constant
step-sizeµ = 3×10−5 andβ varied.
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Figure 3:Image method synthesised room impulse response.

by calculating the reduction in reverberant energy when the
resulting filter impulse responsew(n) was applied to the
room impulse response. The reverberant error energy in the
equalised system can be calculated as

Rc =
∑n |c(n)|2−max|c(n)|2

max|c(n)|2
(3)

wherec(n) is the equalised system vector given by

c(n) = hr(n)∗w(n)

(∗ denotes convolution). The maximum value ofc is the di-
rect signal component. The reverberant error energyRh in
the original room impulse response vectorhr is calculated
in a similar manner where the maximum value ofh(n) is the
direct signal component. The overall reduction in reverber-
ant error energy in decibels or dereverberation performance
is then

I(dB) = 10log10{Rc}−10log10{Rh} (4)

such thatI = 0 indicates no net improvement in reverberant
energy.

By plotting IKM against iteration the behaviour of the KM
adaptive filter could be monitored1. It was found that the
stability of the KM adaptive filter was greatly dependent on
the values ofµ andβ . While certain combinations gave an
improved dereverberation performance they often exhibited
divergence. By varying bothµ ∈ {1,2, · · · ,10}×10−5 and
β ∈ {0.99,0.991, · · · ,0.999} optimal values could be esti-
mated. For male speech the optimal values for this specific
RIR were estimated asµ = 3× 10−5 andβ = 0.995. Fig-
ure 4 shows two three-dimensional plots illustrating derever-
beration performance with varied step-sizeµ and moment
smoothing constantβ . The instability of the KM filter can
be seen on the right-hand-side of each plot after an optimal
performance has been reached.

3.2 Predictive deconvolution as a KM prefiltering stage

The predictive deconvolution stage was tested as a prefilter-
ing stage to the kurtosis maximization filter (Figure 5). The
same speech samples were processed using the steps outlined
in Section 2 (markedStage 1in Figure 5) and passed through
the resulting FIR filter. The output ¯x(n) was used as the input
to the KM adaptive filter. Both short LP residual extraction
stages (short LP 1andshort LP 2in Figure 5) had the same
parameters as in the previous experiment.

The autocorrelation sequence was calculated from 60s of
LP residual speech (661500 samples) and the predictive filter
lengthPlong chosen as 2500, againPspeech= 20. The resulting
reverberation reduction before the KM stage was found to
be approximatelyIPD = −0.7dB for male speech. The KM
processing stage was applied using the same parameters. The
complete equalised system was calculated after each iteration
as

c(n) = hr(n)∗ (aavg(n)∗w(n))

and the performance calculated as per Equations (3-4). The
impulse responsew(n) of the KM filter was used in a second

1The subscriptKM indicates the performance is measured for thekur-
tosis maximizationstage only.PD represents thepredictive deconvolution
stage andPDKM indicates the combined approach.
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FIR filter after convergence and dereverberated speechy(n)
extracted by filtering the first stage output ¯x(n).

Figure 5: Block diagram showing predictive deconvolution stage
as preprocess to the KM adaptive filter.

The resulting adaptive filter performance is plotted on
Figure 6 alongside theKM only results (dotted and dot-
dashed lines respectively). From these it can be seen that
the combined filter converges faster and gives better perfor-
mance for male speech with a reverberation reduction of al-
mostIPDKM = −4dB.
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Figure 6: Dereverberation performance for male and female
speech using the KM adaptive filter only and with Predictive de-
convolution (PD) stage. — male speech (KM only),−− female
speech (KM only), · · · male speech (combinedPDKM), ·−· female
speech (combinedPDKM).

4. EFFECT OF FIRST STAGE LP PARAMETERS
ON PERFORMANCE

The KM adaptive filter and combined PDKM processes were
applied to female speeech using the same parameters as
above. It can be seen from Figure 6 that with the use of
the predictive deconvolution stage the result is actually in-
ferior to that achieved using KM alone. It was found that
the performance of the algorithm was affected by the first LP
residual extraction orderPspeech1 (labelledshort LP 1in Fig-
ure 5) – the dereverberation performance for the predictive
deconvolution stage was measured for values ofPspeech1 ∈
{10,20, · · · ,100} (an increased frame size of 512 samples
was used). The result is plotted for male and female speech in
Figure 7. From this it can be seen that the PD performance is
improved with increased predictor order, significanlty so for
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Figure 7:PD performance against pole order for male and female
speech.

female speech. The optimum order was found to be approx-
imately Pspeech= 80. When the KM stage is subsequently
applied as in Figure 5 (withPspeech1 = 80 andPspeech2 = 20)
and significant improved is achieved. Table 1 shows the re-
verberant energy reduction achieved using predictive decon-
volution, kurtosis maximization and the combined PD-KM
approach for male and female speech with this prediction or-
der.

Pspeech1 IKM IPD IPDKM

Male 20 -1.4 -2.2 -3.9
Female 20 -1.4 3.0 0.0
Male 80 -1.5 -2.3 -4.1

Female 80 -1.4 -2.5 -4.0

Table 1: Change in reverberatant energy (dB) achieved for
Pspeech1.

A spectrogram of clean, reverberated and PDKM dere-
verberated male speech is shown in Figure 8. This clearly
shows the improved resolution of harmonics for dereverber-
ated speech although there is some loss in temporal definition
due to the acausal nature of the KM filter response.

5. CONCLUSIONS

In this paper a blind dereverberation technique was proposed
to improve upon the performance of the kurtosis maximizing
subband adaptive filtering algorithm [3]. The mixed phase
model of the room transfer function was exploited in which
a prefiltering stage to the kurtosis maximizing filter was used
to estimate the inverse of the minimum phase component.
This stage is a one time FIR filter whose coefficients are
found using a high order predictive deconvolution on se-
quences of LP speech residual. The stability behaviour of the
KM algorithm was investigated and optimum values for the
update step step sizeµ and moment smoothing constantβ
were determined. It was then found that, for male speech, an
improved reduction in reverberant energy could be achieved
using the combined technique over KM alone.

It was then shown that the performance was dependent on
the prediction orderPspeech1 of the first short LP residual ex-
traction and that significant improvements were gained when
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Figure 8: Spectrograms of (a) clean, (b) reverberated and (c) PDKM dereverberated male speech.

Pspeech1 was increased, in particular for female speech. It is
suggested that the stability of the KM filter is also improved
by utilizing the predictive deconvolution stage.
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