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ABSTRACT wherej=1,..,J, k=1, Kj,ieljx={ljk-1+1,...,ljk}, and

This paper addresses the problem of detecting significaanin the following notations have been uset(A) denotes a Poisson
sity variations in multiple Poissonian time-series. Thetettion  distribution with parametek, J is the number of signals to be seg-
is achieved by using a constant Poisson rate model and a-hieranentedKj is the number of segments in tff€ observed signal and
chical Bayesian approach. An appropriate Gibbs samplisgesly |, \ is the sample point after which tth& change occurs in thgh
allows joint estimation of the unknown parameters and hymer  signal (by conventiotj o = 0 andlj x; = n wheren is the number
meters. An extended model that includes constraints oretii@ent  of gpserved samples): Moreover, the sequenges [ 1,...,Yin|
lengths is also proposed. Simulation results performed/nthstic andym = [ym1,...,Ymn] are assumed to be independentlfeﬁr m
and real data illustrate the performance of the proposeatittign. Segmenting the astronomical time segs= [y;.1, .., Yj.a] jointly

consists of estimating the change-points numtgrand their po-
1. INTRODUCTION sitionsljk (for j =1,...,J andk = 1,...,Kj) from the observations

Signal segmentation has received considerable interéis¢isignal  contained inY = [y1,...,yJ]".

processing and statistical literature (see for instan¢c[B] and

references therein). In particular, Bayesian estimata® lshown 3. HIERARCHICAL BAYESIAN MODEL

very interesting properties for this problem [4, 5]. The gbexity '

of the posterior distributions for the unknown parametensegally =~ The unknown parameters for the segmentation problem {intro
requires to develop appropriate simulation methods sudheakov  duced in the previous section) are the numbers of segrigntbe
Chain Monte Carlo (MCMC) methods [4, 5]. These methods carchange-point locationk; x and the Poisson parametergy (with
o0 e o State I ket PYPSTRTATEIETS RUT 4, = - Ay T andA = {11 Ay). A sandard repar
hyperparameters are then integrated out from the joinepiostdis- ir‘neet{elrlzatlg? Scl?ghs'tﬁ;’t_c’f introducing indicatars, j € {1,...,J},
tribution or estimated from the observed data [5]. L ’

The problem of segmenting burst and transient source experi ) ] ) o o
ment (BATSE) data was considered more recently. Bayesian al rji = 1if there is a changepoint at timén the signalj,
gorithms based on a constant Poisson rate model were studied rji = 0 otherwise
[6, 7]. The algorithm studied in [6] decomposed the obsesigd

nal into two segments and iterated the process several tint#®  wijth r; , = 1 (this condition ensures that the number of change-
stopping rule was satisfied. A new algorithm avoiding thealse " 2 the number of steps of ti#' signal are equal to
stopping rule was proposed in [7]. However, the algorithguieed Kj=S™",rii). The unknown parameter vector resulting from this
to define an appropriate prior distribution for the numbectunge- i = 2icalji)- Thet P g
points. These limitations were removed in [8] where a highimal ~ '€Parameterization i = {61,...,6;} where6; = {rj,Aj} and
Bayesian model allowed to estimate the number of changtpoin rj = [Fj1,-..,rjn]. Note that the unknown parameter vecéobe-
their locations as well as confidence intervals for the esti?th pa-  |ongs to a spac® = {0, 1}an > ﬂf—lRT whose dimension de-
rameters. This paper extends the algorithm proposed i0[8W-  pends on the parameteis, j = 1,...,J. This paper proposes to
tiple Poissonian time series. - _ estimate the unknown parameter veofoby using Bayesian esti-
The paper is organized as follows. The joint segmentation pr- mation theory. The likelihood of the observatiohéY'|6) and the

blem is formulated in section 2. Section 3 describes thewifft ; ; . :
A A . . . arameter priord (6) corresponding to the joint segmentation pro-
elements of the hierarchical model which will be used to sdhis Elem are dgtailed(in)the follgwing s?ection. J 9 P

segmentation problem. Section 4 studies a Gibbs samplethwhi
generates samples distributed according to the postaidhe un- -
known parameters. Some simulation results on syntheti et L Likelihood

presented in Section 5. Section 6 introduces a markovianemod The likelihood of the observed vectdf can be expressed as:
for the changepoints which allows to reject segmentationsving
segments shorter than a given minimal length. Section 7expiie

3K A exp(—Ajk)

proposed methodology to real data recorded by the NASA comp- f(Y|0) =
ton Gamma ray observatory’s BATSE (Burst and transientcsur hhidn Yiji!
experiment). Conclusions are reported in the last section. K . 1)
J K
S k(r;) -
2. PROBLEM FORMULATION D I_|1k|_|1)‘jfk exp(=Ajknjk (rj))
J=1k=

This paper studies a segmentation algorithm which analyzes
time series, wherd is the number of signals amis the length of h « ; "
Nt S - - . X re 0 mean roportional i i) = Yier, Yii an
each signal. The statistical properties of the time serieslafined where eans “proportional to", sk (r')_ Zlf_'l*y"" and
as follows: Njk(rj) =ljk—!jk-1 (number of samples in thid" interval

Yii~ 2 (Ajk), of the jt signal).
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3.2 Parameter Priors
3.21

The indicator vectorR; = [r,...,ry,;] " andRy = [ryjr,...,r3i]"
are assumed to be independent for agyi’. Moreover, the possi-
ble correlations between the change locations in the diffieob-
served signals are adjusted by choosing an appropriatedisioi-
bution f(R|P), whereR. = [r1,...,r;]T andP is defined below.
We assume that the probability of havi{‘rgﬁi,...,rj_i}T = ¢ does
not depend on (with £ € & = {0,1}7) and is denoted 2 As a
consequence, the indicator prior distribution is:

f(RP)=[]Pe"
gc&
whereP = {P¢}cc e, Pe € {Po.0,--.,P1. 1} andS(R) is the num-
ber of lags such tha{tl,, ..,rJ_,,}T = &. The more likely the con-

figuration[ryj,...,ry, ,] = ¢, the higher the probability £ This
choice induces correlation between change-point locstiorthe
different time series.

Indicator Vector

3.2.2 Poisson Parameters

The parametera;  are assumed priori independent and Gamma
distributions are assigned to these Poisson parameters:

AjklV,y~9 (v,y),

a priori independent, the prior distribution for the hyperparamete
vector® can be written as follows:

f(®|a) P
| <e|e_|<"

wherea; € {ag._0,...,01..1}. This paper has assumed all values
of ag are equal. In this case, the Dirichlet distribution reduiges
the uniform distribution onZ reflecting the lack of information

regardingP.
3.4 Posterior Distribution of 6

The posterior distribution of the unknown parameter ve@ot
{A\,R} can be computed from the following hierarchical structure:

) Ik (V)L (P), @)

f(9|Y):/f(97c1>|Y)d(DD/f(Y|9)f(9|CD)f(CD)d(D7

wheref (Y|60) and f (®) have been defined in (1) and (2). The pre-
vious priors and hyperpriors allow one to integrate out thisance
parameter#\ andP from the joint distributionf (6, ®|Y), yielding:

wherev = 1 (as in [5]), y is an adjustable hyperparameter and ith

% (a,b) denotes the Gamma distribution with parameteendb.
The previous assumptions yield the following prior far

K;
J vKigy i1k Ki

yKie Ve h _
e ()

=1

wherelg+ (-) is the indicator function defined d@&" (i.e. I+ (t) =1
if t > 0 andl+ (t) = O otherwise) andf (-) is the Gamma function
(i.e. T(t) = fg"u"teUdu, t>0). The Gamma distribution,
which is the conjugate prior for the parametayg, allows to inte-
grate out these parameters from the joint posterior (se®aex:4).

F(R.YY) Y\ E T (sik+v)
CRY) vr|1 [( ) M)
(3)
~ NeeeT (S (R)+a¢)
CRIY) = M(Yece (SE(R)+0e))

The posterior distribution (3) is too complex to obtain €lds
form expressions of the Bayesian estimators for the unkrmava-
meters (such as the minimum mean square error (MMSE) estimat
or the maximuma posteriori (MAP) estimator). In this case, it is
quite common to apply MCMC methods to generate samples which
are asymptotically distributed according to the posterafiinterest.
The samples can then be used to estimate the unknown paramete

4. GIBBSSAMPLER FOR CHANGE-POINT DETECTION

The hyperparameter vector associated with the priors dkfineThe Gibbs sampler is an iterative sampling strategy whictsists

above is® =
mentation depends on the values of the hyperparametersartin p
cular applications, these hyperparameters can be fixed dnait-
able information regarding the observed signals as in [®lvéler,
in order to increase the accuracy of the algorithm, hyperpaters
can be considered as random variables with noninformatieesp
as in [5]. This strategy, involving different levels in a Resjan prior
hierarchy, results in so-calldderarchical Bayesian modelsSuch
models require that one defines hyperparameter priors (sogse
referred to ahiyper-prior9, as detailed in the next section.

3.3 Hyperparameter Priors

3.3.1 Hyperparametey

The prior distribution foly is a noninformative Jeffreys’ prior (as in
[5]) which reflects the absence of knowledge regarding tijzeh
parameter:

Hy) = %/HW(Y)-

3.3.2 HyperparameteP

This paper assumes that the prior distribution Bois a Dirichlet
distribution defined on the simple® = {P; Y ;cs P = 1,P¢ > 0}
with parameter vectarr = [ag_o, ...,a1..1] ' denoted as:

Pla ~ Zx(a).

The Dirichlet distribution is a very common distribution fzrarame-
ters summing to 1. Assuming that the different hyperparametre

(P,y). Of course, the quality of the Bayesian seg-

of generating samples distributed according to the fullditional
distributions of each parameter. This paper proposes tpleaac-
cording to the distributiorf (R, y|Y') defined in (3). The main steps
of the algorithm are summarized in Sections 4.1 to 4.3. Thdee
is invited to consult [10] for more details.

4.1 Generation of SamplesDistributed Accordingto f(R|y,Y)

This generation is achieved by using the Gibbs Sampler tev dra
(n— 1) samples distributed according f@r;,...,r3i|y,Y). This
random variable is discrete and takes its valueg #1{0,1}’. Con-
sequently, its distribution is fully characterized by threlmabilities
P([r1i,-..,r3i]" = €|y, Y),€ € & By using the notationR _; to
denote the matriR whoseith column has been removed, the fol-
lowing result can be obtained:

P(Irvis-orail T = elR-i,. Y ) Of (Ri(e) 1Y),

whereR;(¢) is the matrixR whoseith column has been replaced
by the vectore. This yields a closed-form expression of the prob-
abilitiesP ([r1,....r3;]"T = €|R_j,y,Y) after appropriate normal-
ization.

4.2 Generation of SamplesDistributed Accordingto f(y|R,Y)

To obtain samples distributed according fto/|R,,Y), it is very
convenient to simulate vectors distributed according égoimt dis-
tribution distributionf (y,A|R,,Y) by using Gibbs moves. This step
can be decomposed as follows:
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e Draw samplesaccordingto f (AR, y,Y)
Looking carefully at the joint distributiorf (6, ®|Y), the fol-
lowing results can be obtained:

)\j,k\R, v, Y ~94 (Sj_k (I‘j) +V,Njk (I‘j) +Y).

f(r,ly)
°
3

e Draw samplesaccordingto f(y|R,A,Y) 0 ‘ = -
This is achieved as follows:

20 A( 0 8‘0 160
||||I||||||‘|||||||||I||||||||||||I|||I|I|||I||||||||||||||.||I||II.I||||||||.I|||||I|II|||||||||||||||||||.||I||||I|
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4.3 Posterior Distribution of hyperparameter P

0 L P — -

The hyperparametdP carries information regarding the probabil- 0 20 “0 60 % 10

ity of having simultaneous changes at a given location. Asrse-

quence, its estimation may be interesting in practicalieppbns. ~ Figure 1: Posterior distribution of the change-point lemeg (1D
The posterior distribution of this parameter conditiongmmithe  segmentations).

indicator vectoR, the vector of observed samp¥sand the para-
metersa can be easily derived. This is d-Birichlet distribution
with parametergas + S (R))ccs:

PR, Y,a ~ Zx(0: +S(R)). (4)

5. SIMULATIONS

Many simulations have been conducted to validate the pue\seg- 0 ‘ ‘ . ‘ .

mentation algorithm. The simulations presented in thiisetave ’ ” © ” ” -

been obtained fod = 2 signals ofn = 120 samples. The change- 2° || || |||| ||I I | | I | || H
oint locations for these two sequences lare- (30,70,120) and 10

|p2 = (307 ]_20)_ The parametersq of the Fl?oiss(on /distribu)tions are 0 |||||||||||‘|||||||||| ||||||||||||||||||||||||||"|||||||||||||||||||||||||||||||||||| |||||||||| 0

A1 =1[8,2312" andA, = [14,12]7. The hyperparameters have . : : ‘ ‘ ‘

been set tov = 2 andae = 1,Ve. All figures have been obtained 2 ol |

f(r,ly)
°
@

o)

after averaging the results of 64 Markov chains. The totahlmer
of runs for each Markov chain isyc = 400, includingNy; = 50 % 20 0 w0 w0 0
burn-in iterations. Thus, only the last 350 Markov chainpotit

samples are used for the estimations. Note that the valublgiof Figure 2: Posterior distribution of the change-point lomad (2D
andNyc have been determined by applying standard convergenceegmentation).

diagnoses (see [10] for more details). The results proviethe
joint segmentation procedure are compared with those gedviby
two 1D segmentations (which consists of performing the pseg
algorithm on the two sequences independently).

-
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5.1 Posterior Distribution of the Change-point L ocations

The MMSE estimates of the change locations are depicted en fig
ures 1 and 2 for 1D and joint approaches. Note that these asism
are the posterior probabilities to have changes at therdiffdoca-
tions (since j j is a binary random variable). For example, there is a
very high posterior probability that a change occurredggila= 30 1
andi = 70 in the first sequence (with both 1D and 2D approaches).
The advantage of the joint segmentation procedure isidtest on
these two figures: the change at iag 30 in the second sequence
is much better estimated by the joint approach (fig. 2) thathby
1D approach (fig. 1). Thus, the joint 2D segmentation promedu
provides better results than two independent 1D segmengatin
this example. K

Posterior distribution of K,
o
=

o
o

o
®
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5.2 Posterior Distribution of (Ky,Kz) Figure 3: Posterior distribution of the number of change¥so(2D

The proposed algorithm generates sampi[Bét), ym) distributed  SegMentation).

according to the posterior distributidi(R, y|'Y), which allows for
model selection. Indeed, the change-point number in eaplesee

can be estimated bij = zi”:lr}t_i). Figure 3 shows the esti-

mated posterior ok in each sequence (computed from the last 350The estimation of the Poisson parameters is interestirgg stral-
Markov chain samples) for the joint segmentation algoritithe  lows for signal reconstruction. The posterior distribnsSoof the
maximum values of these posteriors provide the MAP estisnatte parametersi, ) conditionally uponK, = 2 are depicted on figure
the changepoint numbek§ = 3 andK> = 2, which corresponds to 4. They are clearly in good agreement with the actual valfiéiseo
the actual numbers of changes. Note again that there is @et@n parameterst, = [14,12]7. Similar results could be obtained for
lagn =120 in all signals, by convention. Poisson parametefs k. They are omitted here for brevity.

5.3 Poisson Parameter Estimation
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As a consequence, the prior fBr can be written:
$ g f(RP) = f(Rq) I'L [(N(Ri) —=(Ri))
=
11 12 13 14 15 16 17 18 10 11 12 13 14 x E(Rlil) + E(RI )] f (RI)

The posterior distribution of £is still a Dirichlet distribution:
Figure 4: Posterior distribution of the Poisson parameigjs(for

i = 1,2) conditionally onK, = 2. PR,Y ~ % (gE(R) + a£> 7
54 Hyperparameter Estimation whereS (R) is the number of lags such & = £ andR;_1 = 0.

We illustrate the performance of the method by processiag th
synthetic data presented in the section 5. However, we have m
dified the first sequence by inserting a new segment betwegsn la
i = 80 andi = 83 with Poisson parametdr= 3. We perform the
proposed algorithm with. = 4. Fig.'s 6 and 7 show the poste-
rior distributions of the change-locations obtained fa tivo time-
series with the two approaches. The initial algorithm diedetects

The last simulation results illustrate the performancéhefrnethod
for the estimation of the hyperparameter veclRr The poste-
rior distributions of R are depicted on figure 5. They are clearly
in agreement with the actual posterior distributions gibgnthe
Dirichlet distribution (4).

! ° successive model changes between80 andi = 83 (fig. 6), con-
008 o025 trary to the modified algorithm that includes a Markovian mddr
3 0% 2 02 R (fig. 7).
& oo e o1s
0.1 T T T T T T T T T T T
002 005 =¥ | | 1
Q 0 =21 ]
b o e om0t e one 00s ...||.I.u..u.l.n.u.m|u||||||||| ||||||||||||||||||||||||||||||I||I||||__|||||||||I||III||II||I.|I|I|||Iu|||.|
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0.12 =
01 0.15 =051
% 008 ;: 0.1 0 1‘0 2‘0 30 410_ 5‘6‘ ?o 70 a‘o 9‘0 1_60— 110—
%, 0.06 %,
0.04 0.05 20 ' ' ' ' ' ' ' ' ' ' '
0.02 i“ 10
S R il
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10 11
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[

Figure 5: Posterior distribution of the hyperparametexs 1, P1o 05 |
and R;. N AU R | R
80

10 20 30 40 50 60 70 920 100 110

It is important to mention the following point: the number of
burn-in iterations as well as the number of samples usedhier t
estimation have been determined by using appropriate cgpenee
diagnosis. The reader is invited to consult [10] for moreadgt

6. MARKOVIAN MODEL ST o
The vectorSR; = [r1;,...,r3,]" (i =1,...,n) have been previously ) |.|||.I|||.|||.I||||||||||I||||||||||| |||||||||||||||||||||||||||||||In|||||__|||||||||I||I|I|||I||I.|||||||Iu|||.|
10 20 30 40 50 60 70 80 90 100 110 120

Figure 6: Posterior distribution of the change-point lamas (initial
model).

N
S

assumed to be independent. As a consequence, the algoathm c
hesitate between close change-point values. Introdudnstaints ! T [
on the length of the segment could be an efficient means td limi
this phenomenon. This section presents a standard digorete N ‘
finite state Markovian model oRR that rejects all segmentation o 2 30 4 s e 70 8 0 100 110
models involving segments shorter than a minimal letgtRor the T
sake of clarity, we have considered the simple d¢asel. However
this procedure could be generalized to any valuk. of

f(r,ly)
°
3

We propose a®state Markovian model oR with the following j A A e
transition matrix: _ ‘
=05
Po.o Po.1 -+ Pra R | eew b
1 O - 0 10 20 30 40 50 60 70 80 90 100 110
P=
: : - : Figure 7: Posterior distribution of the change-point |omad
1 0 0 (Markovian model).

By denoting(R;) =
O(Rj—¢)=1ifRj=
that:

Mecs PPR ) and=(R;) = 5(R; — 0) (with
€, 0(Rj —€) = 0 otherwise), it can be shown 7. APPLICATION TO BATSE DATA
This section presents the analysis of a small sample of ddténed

f (R NR;)) if=Z(Ri_1)=1, by the NASA Compton Gamma Ray Observatory’s BATSE (Burst
(Ri|Rj-1,P) = =(Rj) otherwise and Transient Source Experiment) [11]. By the very naturthisf
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photon-counting experiment, the time series can be aaiynaiod-

eled as sequences of Poissonian data whose Poisson rateepara

ters vary as determined by the actual changes in brightrfeb® o
gamma-ray burst (GRB) source. The intensity of the GRB asefu
tion of time often consists of a series of short-time-schaiaecsures,
called pulses. Of considerable interest is how the GRB lditia

depends on the energy of the radiation. In the data mode zethly
here, BATSE recorded the energies of the photons in fourggner

channels — analogous to four colors in ordinary visible atdn.

The unit of energy ikeV (thousand electron volts), and the nomi-

nal energy channels are: 2%0keV, 60— 110keV, 110— 325eV,

and> 325keV. The variability curves at low and high energies are

typically very similar, but there can be a delay or lag betwisem.

The hierarchical method presented in this paper has been ap-

plied to the BATSE data. The raw counting data (which coasi$t

about 29000 photons recorded in four energy channels) hese b
transformed into binned data by counting the number of pimoto

distributed in 256 time bins of width.88ms Note that] = 4 in this

example. The results have been averaged from 64 Markov <hain

with Nyc = 3500 runs andNy,; = 200 burn-in iterations. Figure 8
shows that the MAP estimates of paramet¢rsireK; =5,K> =7,

o~

K3=11 andK, = 8. The estimated posterior distribution Bf

¥,(n)

¥,(n)

Q]

time (s)

Figure 9: Block representation (4D astronomical data).
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