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ABSTRACT

This paper addresses the problem of detecting significant inten-
sity variations in multiple Poissonian time-series. This detection
is achieved by using a constant Poisson rate model and a hierar-
chical Bayesian approach. An appropriate Gibbs sampling strategy
allows joint estimation of the unknown parameters and hyperpara-
meters. An extended model that includes constraints on the segment
lengths is also proposed. Simulation results performed on synthetic
and real data illustrate the performance of the proposed algorithm.

1. INTRODUCTION

Signal segmentation has received considerable interest inthe signal
processing and statistical literature (see for instance [1, 2, 3] and
references therein). In particular, Bayesian estimators have shown
very interesting properties for this problem [4, 5]. The complexity
of the posterior distributions for the unknown parameters generally
requires to develop appropriate simulation methods such asMarkov
Chain Monte Carlo (MCMC) methods [4, 5]. These methods can
also be used to estimate the unknown hyperparameters by introdu-
cing a second level of hierarchy within the Bayesian paradigm. The
hyperparameters are then integrated out from the joint posterior dis-
tribution or estimated from the observed data [5].

The problem of segmenting burst and transient source experi-
ment (BATSE) data was considered more recently. Bayesian al-
gorithms based on a constant Poisson rate model were studiedin
[6, 7]. The algorithm studied in [6] decomposed the observedsig-
nal into two segments and iterated the process several timesuntil a
stopping rule was satisfied. A new algorithm avoiding the useof a
stopping rule was proposed in [7]. However, the algorithm required
to define an appropriate prior distribution for the number ofchange-
points. These limitations were removed in [8] where a hierarchical
Bayesian model allowed to estimate the number of changepoints,
their locations as well as confidence intervals for the estimated pa-
rameters. This paper extends the algorithm proposed in [8] to mul-
tiple Poissonian time series.

The paper is organized as follows. The joint segmentation pro-
blem is formulated in section 2. Section 3 describes the different
elements of the hierarchical model which will be used to solve this
segmentation problem. Section 4 studies a Gibbs sampler which
generates samples distributed according to the posteriorsof the un-
known parameters. Some simulation results on synthetic data are
presented in Section 5. Section 6 introduces a markovian model
for the changepoints which allows to reject segmentations involving
segments shorter than a given minimal length. Section 7 applies the
proposed methodology to real data recorded by the NASA comp-
ton Gamma ray observatory’s BATSE (Burst and transient source
experiment). Conclusions are reported in the last section.

2. PROBLEM FORMULATION

This paper studies a segmentation algorithm which analyzesJ×n
time series, whereJ is the number of signals andn is the length of
each signal. The statistical properties of the time series are defined
as follows:

y j,i ∼ P
(
λ j,k
)
,

where j = 1, ...,J, k = 1, ...,K j , i ∈ I j,k = {l j,k−1 + 1, ..., l j,k}, and
the following notations have been used:P(λ ) denotes a Poisson
distribution with parameterλ , J is the number of signals to be seg-
mented,K j is the number of segments in thej th observed signal and
l j,k is the sample point after which thekth change occurs in thej th

signal (by conventionl j,0 = 0 andl j,K j = n wheren is the number
of observed samples). Moreover, the sequencesyl = [yl ,1, . . . ,yl ,n]
andym = [ym,1, . . . ,ym,n] are assumed to be independent forl 6= m.
Segmenting the astronomical time seriesy j = [y j,1, ...,y j,n] jointly
consists of estimating the change-points numbersK j and their po-
sitions l j,k (for j = 1, ...,J andk = 1, ...,K j ) from the observations
contained inY = [y1, . . . ,yJ]

T.

3. HIERARCHICAL BAYESIAN MODEL

The unknown parameters for the segmentation problem (intro-
duced in the previous section) are the numbers of segmentsK j , the
change-point locationsl j,k and the Poisson parametersλ j,k (with
λ j = [λ j,1, . . . ,λ j,K j ]

T andΛ = {λ 1, . . . ,λ J}). A standard repara-
meterization consists of introducing indicatorsr j,i , j ∈ {1, . . . ,J},
i ∈ {1, . . . ,n} such that:

{
r j,i = 1 if there is a changepoint at timei in the signalj ,
r j,i = 0 otherwise,

with r j,n = 1 (this condition ensures that the number of change-
points and the number of steps of thej th signal are equal to
K j = ∑n

i=1 r j,i ). The unknown parameter vector resulting from this
reparameterization isθ = {θ 1, . . . ,θJ} whereθ j =

{
r j ,λ j

}
and

r j = [r j,1, . . . , r j,n]. Note that the unknown parameter vectorθ be-

longs to a spaceΘ = {0,1}J×n ×∏J
j=1 R

K j
+ whose dimension de-

pends on the parametersK j , j = 1, . . . ,J. This paper proposes to
estimate the unknown parameter vectorθ by using Bayesian esti-
mation theory. The likelihood of the observationsf (Y|θ) and the
parameter priorsf (θ) corresponding to the joint segmentation pro-
blem are detailed in the following section.

3.1 Likelihood

The likelihood of the observed vectorY can be expressed as:

f (Y|θ) =
J

∏
j=1

K j

∏
k=1

∏
i∈I j ,k

λ y j ,i

j,k exp
(
−λ j,k

)

y j,i !

∝
J

∏
j=1

K j

∏
k=1

λ sj ,k(r j )
j,k exp

(
−λ j,kn j,k

(
r j
))

,

(1)

where ∝ means “proportional to”,sj,k
(
r j
)

= ∑i∈I j ,k
y j,i and

n j,k
(
r j
)

= l j,k − l j,k−1 (number of samples in thekth interval I j,k

of the j th signal).
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3.2 Parameter Priors

3.2.1 Indicator Vector

The indicator vectorsRi = [r1,i , . . . , rJ,i ]
T andRi′ = [r1,i′ , . . . , rJ,i′ ]

T

are assumed to be independent for anyi 6= i′. Moreover, the possi-
ble correlations between the change locations in the different ob-
served signals are adjusted by choosing an appropriate prior distri-
bution f (R|P), whereR = [r1, . . . ,rJ]

T andP is defined below.
We assume that the probability of having[r1,i , . . . , rJ,i ]

T = ε does
not depend oni (with ε ∈ E = {0,1}J) and is denoted Pε . As a
consequence, the indicator prior distribution is:

f (R|P) = ∏
ε∈E

PSε(R)
ε ,

whereP = {Pε}ε∈E , Pε ∈ {P0...0, . . . ,P1...1} andSε (R) is the num-
ber of lags such that[r1,i , . . . , rJ,i ]

T = ε. The more likely the con-
figuration [r1,i , . . . , rJ,i ]

T = ε, the higher the probability Pε . This
choice induces correlation between change-point locations in the
different time series.

3.2.2 Poisson Parameters

The parametersλ j,k are assumeda priori independent and Gamma
distributions are assigned to these Poisson parameters:

λ j,k|ν,γ ∼ G (ν,γ) ,

where ν = 1 (as in [5]), γ is an adjustable hyperparameter and
G (a,b) denotes the Gamma distribution with parametersa andb.
The previous assumptions yield the following prior forΛ:

f (Λ|γ) =
J

∏
j=1


 γνK j e−γ ∑

Kj
k=1 λ j ,k

Γ(ν)K j

K j

∏
k=1

(
λ ν−1

j,k IR+(λ j,k)
)

 ,

whereIR+(·) is the indicator function defined onR+ (i.e. IR+(t)= 1
if t ≥ 0 andIR+(t) = 0 otherwise) andΓ(·) is the Gamma function
(i.e. Γ(t) =

∫+∞
0 ut−1e−udu, t > 0). The Gamma distribution,

which is the conjugate prior for the parametersλ j,k, allows to inte-
grate out these parameters from the joint posterior (see section 3.4).

The hyperparameter vector associated with the priors defined
above isΦ = (P,γ). Of course, the quality of the Bayesian seg-
mentation depends on the values of the hyperparameters. In parti-
cular applications, these hyperparameters can be fixed fromavail-
able information regarding the observed signals as in [9]. However,
in order to increase the accuracy of the algorithm, hyperparameters
can be considered as random variables with noninformative priors
as in [5]. This strategy, involving different levels in a Bayesian prior
hierarchy, results in so-calledhierarchical Bayesian models. Such
models require that one defines hyperparameter priors (sometimes
referred to ashyper-priors), as detailed in the next section.

3.3 Hyperparameter Priors

3.3.1 Hyperparameterγ
The prior distribution forγ is a noninformative Jeffreys’ prior (as in
[5]) which reflects the absence of knowledge regarding this hyper-
parameter:

f (γ) =
1
γ

IR+(γ).

3.3.2 HyperparameterP

This paper assumes that the prior distribution forP is a Dirichlet
distribution defined on the simplexP = {P;∑ε∈E Pε = 1,Pε > 0}
with parameter vectorα = [α0...0, ...,α1...1]

T denoted as:

P|α ∼ D2J(α).

The Dirichlet distribution is a very common distribution for parame-
ters summing to 1. Assuming that the different hyperparameters are

a priori independent, the prior distribution for the hyperparameter
vectorΦ can be written as follows:

f (Φ|α) ∝

(

∏
ε∈E

Pαε−1
ε

)
1
γ

IR+(γ)IP (P), (2)

whereαε ∈ {α0...0, ...,α1...1}. This paper has assumed all values
of αε are equal. In this case, the Dirichlet distribution reducesto
the uniform distribution onP reflecting the lack of information
regardingP.

3.4 Posterior Distribution of θ
The posterior distribution of the unknown parameter vectorθ =
{Λ,R} can be computed from the following hierarchical structure:

f (θ |Y) =

∫
f (θ ,Φ|Y)dΦ ∝

∫
f (Y|θ) f (θ |Φ) f (Φ)dΦ,

where f (Y|θ) and f (Φ) have been defined in (1) and (2). The pre-
vious priors and hyperpriors allow one to integrate out the nuisance
parametersΛ andP from the joint distributionf (θ ,Φ|Y), yielding:

f (R,γ |Y)

C(R|Y)
∝

1
γ

J

∏
j=1

[(
γν

Γ(ν)

)K j K j

∏
k=1

Γ
(
sj,k +ν

)
(
n j,k + γ

)sj ,k+ν

]
IR+(γ),

(3)
with

C(R|Y) =
∏ε∈E Γ(Sε (R)+αε )

Γ(∑ε∈E (Sε (R)+αε ))
.

The posterior distribution (3) is too complex to obtain closed-
form expressions of the Bayesian estimators for the unknownpara-
meters (such as the minimum mean square error (MMSE) estimator
or the maximuma posteriori (MAP) estimator). In this case, it is
quite common to apply MCMC methods to generate samples which
are asymptotically distributed according to the posteriors of interest.
The samples can then be used to estimate the unknown parameters.

4. GIBBS SAMPLER FOR CHANGE-POINT DETECTION

The Gibbs sampler is an iterative sampling strategy which consists
of generating samples distributed according to the full conditional
distributions of each parameter. This paper proposes to sample ac-
cording to the distributionf (R,γ |Y) defined in (3). The main steps
of the algorithm are summarized in Sections 4.1 to 4.3. The reader
is invited to consult [10] for more details.

4.1 Generation of Samples Distributed According to f (R|γ ,Y)

This generation is achieved by using the Gibbs Sampler to draw
(n−1) samples distributed according tof (r1,i , . . . , rJ,i|γ ,Y). This
random variable is discrete and takes its values inE = {0,1}J. Con-
sequently, its distribution is fully characterized by the probabilities
P([r1,i , . . . , rJ,i ]

T = ε|γ ,Y),ε ∈ E . By using the notationsR−i to
denote the matrixR whoseith column has been removed, the fol-
lowing result can be obtained:

P
(
[r1,i , . . . , rJ,i ]

T = ε|R−i ,γ ,Y

)
∝ f (Ri(ε),γ |Y) ,

whereRi(ε) is the matrixR whoseith column has been replaced
by the vectorε. This yields a closed-form expression of the prob-
abilitiesP

(
[r1,i , . . . , rJ,i ]

T = ε|R−i ,γ ,Y
)

after appropriate normal-
ization.

4.2 Generation of Samples Distributed According to f (γ |R,Y)

To obtain samples distributed according tof (γ |R,Y), it is very
convenient to simulate vectors distributed according to the joint dis-
tribution distributionf (γ ,Λ|R,Y) by using Gibbs moves. This step
can be decomposed as follows:
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• Draw samples according to f (Λ|R,γ ,Y)
Looking carefully at the joint distributionf (θ ,Φ|Y), the fol-
lowing results can be obtained:

λ j,k|R,γ ,Y ∼ G
(
sj,k
(
r j
)
+ν,n j,k

(
r j
)
+ γ
)
.

• Draw samples according to f (γ |R,Λ,Y)
This is achieved as follows:

γ |R,Λ ∼ G

(
ν

J

∑
j=1

K j ,

J

∑
j=1

K j

∑
k=1

λ j,k

)
.

4.3 Posterior Distribution of hyperparameter P

The hyperparameterP carries information regarding the probabil-
ity of having simultaneous changes at a given location. As a conse-
quence, its estimation may be interesting in practical applications.
The posterior distribution of this parameter conditioned upon the
indicator vectorR, the vector of observed samplesY and the para-
metersα can be easily derived. This is a 2J-Dirichlet distribution
with parameters(αε +Sε (R))ε∈E :

P|R,Y,α ∼ D2J(αε +Sε (R)). (4)

5. SIMULATIONS

Many simulations have been conducted to validate the previous seg-
mentation algorithm. The simulations presented in this section have
been obtained forJ = 2 signals ofn = 120 samples. The change-
point locations for these two sequences arel1 = (30,70,120) and
l2 = (30,120). The parameters of the Poisson distributions are
λ 1 = [8,23,12]T and λ 2 = [14,12]T. The hyperparameters have
been set toν = 2 andαε = 1,∀ε. All figures have been obtained
after averaging the results of 64 Markov chains. The total number
of runs for each Markov chain isNMC = 400, includingNbi = 50
burn-in iterations. Thus, only the last 350 Markov chain output
samples are used for the estimations. Note that the values ofNbi
andNMC have been determined by applying standard convergence
diagnoses (see [10] for more details). The results providedby the
joint segmentation procedure are compared with those provided by
two 1D segmentations (which consists of performing the proposed
algorithm on the two sequences independently).

5.1 Posterior Distribution of the Change-point Locations

The MMSE estimates of the change locations are depicted on fig-
ures 1 and 2 for 1D and joint approaches. Note that these estimates
are the posterior probabilities to have changes at the different loca-
tions (sincer j,i is a binary random variable). For example, there is a
very high posterior probability that a change occurred at lagsi = 30
andi = 70 in the first sequence (with both 1D and 2D approaches).
The advantage of the joint segmentation procedure is illustrated on
these two figures: the change at lagi = 30 in the second sequence
is much better estimated by the joint approach (fig. 2) than bythe
1D approach (fig. 1). Thus, the joint 2D segmentation procedure
provides better results than two independent 1D segmentations on
this example.

5.2 Posterior Distribution of (K1,K2)

The proposed algorithm generates samples
(
R(t),γ(t)

)
distributed

according to the posterior distributionf (R,γ |Y), which allows for
model selection. Indeed, the change-point number in each sequence

can be estimated byK(t)
j = ∑n

i=1 r(t)
j,i . Figure 3 shows the esti-

mated posterior ofK j in each sequence (computed from the last 350
Markov chain samples) for the joint segmentation algorithm. The
maximum values of these posteriors provide the MAP estimates of
the changepoint numberŝK1 = 3 andK̂2 = 2, which corresponds to
the actual numbers of changes. Note again that there is a change at
lagn = 120 in all signals, by convention.
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Figure 1: Posterior distribution of the change-point locations (1D
segmentations).
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Figure 2: Posterior distribution of the change-point locations (2D
segmentation).
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Figure 3: Posterior distribution of the number of change-points (2D
segmentation).

5.3 Poisson Parameter Estimation

The estimation of the Poisson parameters is interesting since it al-
lows for signal reconstruction. The posterior distributions of the
parametersλ2,k conditionally uponK2 = 2 are depicted on figure
4. They are clearly in good agreement with the actual values of the
parametersλ 2 = [14,12]T. Similar results could be obtained for
Poisson parametersλ1,k. They are omitted here for brevity.
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Figure 4: Posterior distribution of the Poisson parametersλ2,i (for
i = 1,2) conditionally onK2 = 2.

5.4 Hyperparameter Estimation

The last simulation results illustrate the performance of the method
for the estimation of the hyperparameter vectorP. The poste-
rior distributions of Pε are depicted on figure 5. They are clearly
in agreement with the actual posterior distributions givenby the
Dirichlet distribution (4).
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Figure 5: Posterior distribution of the hyperparameters P00,P01,P10
and P11.

It is important to mention the following point: the number of
burn-in iterations as well as the number of samples used for the
estimation have been determined by using appropriate convergence
diagnosis. The reader is invited to consult [10] for more details.

6. MARKOVIAN MODEL

The vectorsRi = [r1,i , . . . , rJ,i]
T (i = 1, . . . ,n) have been previously

assumed to be independent. As a consequence, the algorithm can
hesitate between close change-point values. Introducing constraints
on the length of the segment could be an efficient means to limit
this phenomenon. This section presents a standard discrete-time
finite state Markovian model onR that rejects all segmentation
models involving segments shorter than a minimal lengthL. For the
sake of clarity, we have considered the simple caseL = 1. However
this procedure could be generalized to any value ofL.
We propose a 2J-state Markovian model onR with the following
transition matrix:

P =




P0...0 P0...1 · · · P1...1
1 0 · · · 0
...

...
.. .

...
1 0 · · · 0


 .

By denotingΠ(Ri) = ∏ε∈E Pδ (Ri−ε)
ε andΞ(Ri) = δ (Ri −0) (with

δ (Ri −ε) = 1 if Ri = ε, δ (Ri −ε) = 0 otherwise), it can be shown
that:

f (Ri |Ri−1,P) =

{
Π(Ri) if Ξ(Ri−1) = 1,

Ξ(Ri) otherwise.

As a consequence, the prior forR can be written:

f (R|P) = f (R1)
n−1

∏
i=2

[
(Π(Ri)−Ξ(Ri ))

×Ξ(Ri−1)+Ξ(Ri )
]

f (Ri).

The posterior distribution of Pε is still a Dirichlet distribution:

P|R,Y ∼ D2J

(
S̃ε(R)+αε

)
,

whereS̃ε (R) is the number of lags such asRi = ε andRi−1 = 0.
We illustrate the performance of the method by processing the

synthetic data presented in the section 5. However, we have mo-
dified the first sequence by inserting a new segment between lags
i = 80 andi = 83 with Poisson parameterλ = 3. We perform the
proposed algorithm withL = 4. Fig.’s 6 and 7 show the poste-
rior distributions of the change-locations obtained for the two time-
series with the two approaches. The initial algorithm clearly detects
successive model changes betweeni = 80 andi = 83 (fig. 6), con-
trary to the modified algorithm that includes a Markovian model for
R (fig. 7).
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Figure 6: Posterior distribution of the change-point locations (initial
model).

10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

y 1(n
)

10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

f(
r 1|y

)

10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

y 2(n
)

10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

f(
r 2|y

)

Figure 7: Posterior distribution of the change-point locations
(Markovian model).

7. APPLICATION TO BATSE DATA

This section presents the analysis of a small sample of data obtained
by the NASA Compton Gamma Ray Observatory’s BATSE (Burst
and Transient Source Experiment) [11]. By the very nature ofthis
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photon-counting experiment, the time series can be accurately mod-
eled as sequences of Poissonian data whose Poisson rate parame-
ters vary as determined by the actual changes in brightness of the
gamma-ray burst (GRB) source. The intensity of the GRB as a func-
tion of time often consists of a series of short-time-scale structures,
called pulses. Of considerable interest is how the GRB variability
depends on the energy of the radiation. In the data mode analyzed
here, BATSE recorded the energies of the photons in four energy
channels – analogous to four colors in ordinary visible radiation.
The unit of energy iskeV (thousand electron volts), and the nomi-
nal energy channels are: 25−60keV, 60−110keV, 110−325keV,
and> 325keV. The variability curves at low and high energies are
typically very similar, but there can be a delay or lag between them.

The hierarchical method presented in this paper has been ap-
plied to the BATSE data. The raw counting data (which consists of
about 29000 photons recorded in four energy channels) have been
transformed into binned data by counting the number of photons
distributed in 256 time bins of width 3.68ms. Note thatJ = 4 in this
example. The results have been averaged from 64 Markov chains
with NMC = 3500 runs andNbi = 200 burn-in iterations. Figure 8
shows that the MAP estimates of parametersK j areK̂1 = 5, K̂2 = 7,

K̂3 = 11 andK̂4 = 8. The estimated posterior distribution ofR
can then be used to estimate the change locations in each channel.
Here, in each sequence, segments are obtained from theK̂ j largest
values of the posteriors. In the last step of the analysis, the differ-
ent Poisson intensities are then estimated by averaging thesignal
on each segment of each sequence (which corresponds to the in-
tensity MMSE estimator conditioned toK j ). This procedure yields
Bayesian blocks introduced in [6]. The resulting Bayesian blocks
are shown in figure 9. Most results are in good agreement with those
presented in [12]. However, the proposed joint approach makes it
possible to find out changes that were not initially detectedby the it-
erative method. For example, the second and third changepoints l1,2
andl1,3 in the first channel (respectively at 0.1294sand 0.2316s) are
detected by the joint approach and not by independent 1D segmen-
tations. The presence of changes at the same position in the other
channels explains this detection.

8. CONCLUSIONS

This paper studied a joint Bayesian segmentation procedurefor
Poissonian time series. The proposed Bayesian formalism allowed
to define correlations between the change locations of thesetime
series. A constraint ensuring a minimal segment length can be in-
cluded in the algorithm by using a Markovian prior for the change
locations. The segmenter performance was illustrated on several
synthetic data sets. The application to real data recorded by the
NASA Compton Gamma Ray Observatory’s BATSE was finally in-
vestigated.
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Figure 8: Posterior distribution of the change-point number (4D
astronomical data).
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Figure 9: Block representation (4D astronomical data).
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