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ABSTRACT

The maximum likelihood (ML) approach for estimating direction of
arrival (DOA) plays an important role in array processing. Its con-
sistency and efficiency have been well established in the literature.
A common assumption is that the number of signals is known. In
many applications, this information is not available and needs to be
estimated. However, the estimated number of signals does not al-
ways coincide with the true number of signals. Thus it is crucial to
know whether the ML estimator provides any relevant information
about DOA parameters under a misspecified number of signals. In
the previous study [3], we focused on the deterministic signal model
and showed that the ML estimator under a misspecified number of
signals converges to a well defined limit. Under mild conditions, the
ML estimator converges to the true parameters. In the current work,
we extend those results to the stochastic signal model and validate
our analysis by simulations.

1. INTRODUCTION

The problem of estimating direction of arrival (DOA) plays a key
role in array processing. Among existing methods, the maximum
likelihood (ML) approach has the best statistical properties. It is also
known to be robust against small sample numbers, signal coherence
and closely located sources.

The consistency property of the ML estimator was derived in in
[6] [7]. Therein, the number of signals, m, is implicitly assumed
to be the true one, m0. However, in many applications, m is usu-
ally unknown in advance and needs to be estimated together with
the DOA parameters. The commonly used information theoretic ap-
proach [8] or the multiple testing procedure [4] for determining the
number of signals has their own estimation errors. We may often
apply the ML method with an incorrectly chosen number of signals.

Therefore, it is crucial to know whether the ML estimator pro-
vides any useful information about the true parameters even if the
assumed number of signals is incorrect. In the previous study [3],
we applied the theory of ML estimation of misspecified model [9] to
the deterministic signal model. Our analysis achieved two conclu-
sions. (1) The ML estimator under misspecified numbers of signals
converges to a well defined limit. (2) When the signal sources are
well separated, the ML estimator converges to the true parameters.

This work extends those results to the stochastic signal model
using a similar approach. To find the limiting point of the ML esti-
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mator, we minimize the Kullback-Leibler distance between the as-
sumed probability model and the true probability model and derive
a criterion similar to the concentrated likelihood function. To get
more insight, we assume that the number of signals is much smaller
than the number of sensors. In this case, the ML estimator under
misspecified number of signals converges to the true parameters.

This paper is outlined as follows. We give a brief description
of the signal model in next section. The consistency property of the
quasi ML estimator developed by White is presented in section 3.
In section 4, we derive a criterion that defines the limiting point for
an arbitrarily chosen number of signals. In section 5, we consider
a special case in which the number of signals is much smaller than
that of the sensors. Then we present and discuss numerical results in
section 6. Our concluding remarks are given in section 7.

2. PROBLEM FORMULATION

Consider an array of n sensors receiving m narrow band signals
emitted by far-field sources located at θm = [ θ1,. . ., θm]T . The
array output x(t) is described as

x(t) = Hm(θm)sm(t) + n(t), t = 1, . . . , T (1)

where the ith column d(θi) of the matrix

Hm(θm) = [d(θ1) · · ·d(θi) · · ·d(θm)] (2)

represents the steering vector associated with the signal coming from
θi. The signal vector sm(t) is considered as a stationary, temporally
uncorrelated complex normal process with zero mean and covari-
ance matrix Cs = Esm(t)sm(t)′ where (·)′ denotes the Hermitian
transpose. The noise vector n(t) is a spatially and temporally un-
correlated complex normal process with zero mean and covariance
matrix νIn where ν is the noise spectral parameter and In is an
n × n identity matrix. Thus, the array output x(t) is complex nor-
mally distributed with zero mean and covariance matrix

Cx = Hm(θm)CsHm(θm)′ + νIn. (3)

Based on the observations {x(t)}T
t=1 and a pre-specified num-

ber of signals, m, the ML estimate θ̂m(T ) is obtained by minimizing
the negative concentrated likelihood function [2]

lT (θ) = log det
(
P (θm)ĈxP (θm)+ν̂P ⊥(θm)

)
, (4)

ν̂ =
1

n − m
tr

(
P ⊥(θm)Ĉx

)
(5)
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where P (θm) represents the projection matrix onto the column space
of Hm(θm) and P ⊥(θm) = In−P (θm). Ĉx = 1

T

∑T
t=1 x(t)x(t)′

denotes the sample covariance matrix.
Suppose that the number of signals m is correctly specified, the

ML estimator converges to the true parameter θ0 with increasing
sample size [6]. However, as mentioned previously, the number of
signals is usually unknown and needs to be estimated via an addi-
tional step. Due to estimation errors, the estimated number of signals
m̂ does not necessarily coincide with the true number of signals m0.
Therefore, it is important to know whether the ML estimate provides
any information about θ0 if one does not assume the correct number
of signals.

3. ML ESTIMATES OF MISSPECIFIED MODEL

A misspecified number of signals corresponds to a wrong model or-
der. We treat an incorrectly chosen m as a model mismatch problem.
Under a very general framework [9], White defines the ML estimator
(MLE) under an incorrectly specified probability model as the quasi
ML estimator (QMLE).

More precisely, let g(x) and f(x, ϑ) denote the true and as-
sumed probability density function of the underlying data x, respec-
tively. The QMLE maximizes the log-likelihood function

ϑ̂(T ) = arg max
ϑ

LT (ϑ) (6)

where

LT (ϑ) =
1

T

T∑
t=1

log f(xt, ϑ). (7)

It is well known that when f(x, ϑ) contains the real structure, i.e.
f(x, ϑ0) = g(x) for some ϑ0, the MLE is consistent for ϑ0 un-
der proper regularity conditions. Without this restriction, Akaike [1]
noted that since LT (ϑ) is a natural estimator for Eg[log f(x, ϑ)] ,
ϑ̂(T ) is a natural estimator for ϑ∗ , the parameter vector that mini-
mizes the Kullback-Leibler information criterion

I(g||f) = Eg [log(g(x)/f(x, ϑ))], (8)

where the expectation is taken with respect to the true model g(x).
Under regularity conditions on g(x), f(x, ϑ) and I(g||f), White
proved the following.

Theorem 2.2 of [9] The QMLE ϑ̂(T ) defined by (6) converges to
ϑ∗ as T → ∞ for almost every sequence.

4. CONSISTENCY UNDER MISSPECIFIED NUMBER OF
SIGNALS

From the above discussion, we know that consistency still has a
meaning for a misspecified probability model. In the following, we
shall apply White’s results and find the limiting point of the MLE
under a misspecified number of signals.

Assuming the number of signals m, each array observation x(t)
follows a complex normal distribution N c(0, Cx) with Cx defined
by (3). The log-likelihood function log f(x) (without constant term)
corresponding to the assumed probability model is as follows

log f(x) = −[
log det Cx + tr

(
C−1

x x(t)x(t)′
) ]

. (9)

The true probability model g(x) corresponding to the correct num-
ber of signals, m0, is given by N c(0, Cx0) where

Cx0 = H0Cs0H ′
0 + ν0In (10)

with the true steering matrix H0 = Hm0(θ0). Since g(x) describes
the true model, Cs0 , θ0, ν0 are the true parameters. They are con-
sidered as constant throughout our analysis. Based on Theorem 2.2
of [9], we obtain a criterion that defines the limiting point of the ML
estimator.

Theorem 1 Assume the number of signals to be m. The ML estima-
tor θm(T ) converges almost surely to the minimizing point θ∗

m of
the criterion

Q(θm) = log det
(
P (θm)Cx0P (θm)+ν̃P ⊥(θm)

)
(11)

ν̃ =
1

n − m
tr

(
P ⊥(θm)Cx0

)
(12)

where the true covariance matrix Cx0 is given in (10).

Proof: The Kullback-Leibler information criterion (8) can be re-
written as

I(g||f) = Eg[log g(x)] − Eg[log f(x)]. (13)

Since g(x) is fixed, minimizing I(g||f) is equivalent to minimizing
the expected negative log-likelihood

q = Eg[− log f(x)] . (14)

Inserting (9) into (14), we obtain

q = Eg

[
log det Cx + tr(C−1

x x(t)x(t)′)
]

= log det Cx + tr(C−1
x C̃x) (15)

where C̃x is the expected second moment of x(t)

C̃x = Eg[x(t)x(t)′] = Cx0 . (16)

The criterion q has the same form as the log-likelihood (9). The only
difference is that the term x(t)x(t)′ is now replaced by its expec-
tation Cx0 . Applying a similar technique for obtaining the concen-
trated likelihood function (4), we concentrate (15) with respect to the
signal and noise parameters, Cs and ν. Finally we obtain a criterion
that depends only on θm as following.

Q(θm) = log det
(
P (θm)Cx0P (θm)+ν̃P ⊥(θm)

)
(17)

with ν̃ given by (12). �

Remark: The similarity between criterion Q(θm) and lT (θ) implies
that regardless the assumed number of signals m, the limiting point
θ∗

m minimizes the expected negative concentrated likelihood func-
tion.

To get more insight into the relation between the true parameters
θ0 and the limiting point θ∗

m, we need the following results.
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Result 1 Consider the singular value decomposition (SVD) of the
steering matrix Hm(θm) = U Σ V ′ where U = [U 1 U2]. U 1

consists of the first m columns of U corresponding to the m largest
singular values. The criterion Q(θm) in (11) can be expressed as [5]

Q(θm) = log det

(
U

[
U ′

1Cx0U 1 0
0 ν̃In−m

]
U ′

)

= log det
(
U ′

1Cx0U1

)
+ (n − m) log ν̃ . (18)

Result 2 By the definition of Cx0 and ν̃, and properties of SVD,
one can easily verify eqs. (19), (20).

det(U ′
1Cx0U1) = det

(
P (θm)H0Cs0H ′

0P (θm) + ν0Im

)
(19)

ν̃ =
1

m − n
tr

(
P ⊥(θm)H0Cs0H ′

0P
⊥(θm)

)
+ ν0 (20)

Given an assumed number of signals m, we can interpret the first
term of (18) as the signal part and the second term as the noise part.

5. SPECIAL CASE

To simplify our analysis, we assume the number of signals is much
smaller than the number of sensors, i.e., m << n. In this case, the
criterion Q(θm) in (18) is dominated by the noise part (n−m) log ν̃.

Case 1: m = m0 . Clearly, with the correct number of signals we
have θ∗

m = θ0. Furthermore,

Q(θ∗
m) = Q(θ0) =

m0∑
i=1

log λi + (n − m0) log ν0 (21)

where λ1 ≥ · · · ≥ λm0 are the m0 largest eigenvalues of Cx0 .

Case 2: m < m0 , the assumed number of signals is smaller than
the true number of signals. According to eq. (20), minimizing ν̃ is
equivalent to minimizing the distance between H0 and P (θm)H0

e2 = tr
((

In − P (θm)
)
H0Cs0H ′

0

(
In − P (θm)

))
. (22)

Since rank(P (θm)H0) < rank(H0), the best approximation to
H0 occurs when sp(P (θm)H0) ⊂ sp(H0). For widely separated
signals, one can expect that the columns of Hm(θm) coincide with
m columns of H0 and the components of θ∗

m coincide with m com-
ponents of θ0.

Furthermore, based on Result 1 and Result 2, the criterion Q(θ∗
m)

can be approximately expressed as

Q(θ∗
m) ≈

m∑
i=1

log λi + (n − m) log(ν0 + δ) (23)

where δ = e2/(n − m).

Case 3: m > m0 , the assumed number of signals is larger than
the true number of signals. Hm(θm) has more columns than H0.
It is possible that sp(H0) ⊂ sp(Hm(θm)) and P (θm)H0 = H0.
When this happens, e2 achieves its minimum value zero. For well
separated sources, one can expect that m0 components of θ∗

m co-
incide with the components of θ0. However, the rest (m − m0)
components that correspond to the (m−m0) columns of Hm(θ∗

m)
are not predictable.

With Result 1 and 2, we obtain an approximate expression for
Q(θ∗

m) as follows

Q(θ∗
m) ≈

m0∑
i=1

log λi +
m∑

i=m0+1

log ν0 + (n − m) log ν0 . (24)

Comparing with eq. (21), we can observe that Q(θ∗
m) is close to

the optimal value Q(θ0).

6. SIMULATION

We demonstrate the validity of our analysis by simulation. A uni-
form linear array of 15 sensors with inter-element spacings of half
a wavelength is considered. The narrow band signals are generated
by three signal sources of equal strengths located at [18◦ 36◦ 60◦].
The Signal to Noise Ratio (SNR) is kept at 0 dB. The data consists
of T = 200 snapshots. The experiment performs 500 trials. In each
trial, the DOA parameters are estimated under three assumptions:
m = 2, m = m0 = 3, m = 4. The corresponding estimates are
denoted by θ̂2, θ̂3, θ̂4, respectively.

Fig.1 displays the histogram of θ̂2’s components. In this case,
m < m0 , the number of signals is smaller than the true number of
signals. θ̂2 has less components than θ0 . The components of θ̂2 are
centered at the true DOAs. The ML estimates are very close to the
true parameters.

For comparison, we present results obtained from the true model
case, m = m0 = 3 in fig.2. As expected, θ̂3’s components are
distributed around the true parameters.

When the number of signals is larger than the true one, i.e.
m > m0, there are (m − m0) redundant steering vectors. For
m = 4, m0 = 3, we have one redundant vector. The empirical
distribution of θ̂4 is illustrated in fig. 3. Similar to figs. 1 and 2,
three peaks are positioned at the true parameter values. However,
the estimates corresponding to the redundant steering vector are dis-
tributed over the entire parameter range. It is not surprising because
the redundant vector only needs to lie in a three dimensional sub-
space spanned by the columns of H0. There is no other restriction
on it.

In summary, we observe that ML estimates give us relevant in-
formation about the true DOA parameters for correctly and incor-
rectly chosen m.

7. CONCLUSION

We investigate the consistency property of stochastic ML estimates
when the number of signals is incorrectly specified. From the theory
of ML estimation under misspecified probability model, we know
that the quasi ML estimator converges to a well defined point that
minimizes the Kullback-Leibler criterion. Based on this result, we
derived a criterion that defines the limiting point. Furthermore, we
considered a special case in which the assumed number of signals is
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much smaller than the number of sensors. In this case, the ML esti-
mator converges to true DOA parameters. Simulations showed that
ML estimates give us relevant information about the true parameters
even with a misspecified number of signals.
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Fig. 1. Histogram of the ML estimates θ̂2 for the assumed number of signals
m = 2. The true DOA parameter θ3 = [18◦ 36◦ 60◦], SNR = [0 0 0] dB.
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Fig. 2. Histogram of the components of θ̂3 for the assumed number of
signals m = 3. The true DOA parameter θ3 = [18◦ 36◦ 60◦], SNR =
[0 0 0] dB.
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Fig. 3. Histogram of the components of θ̂4 for the assumed number of
signals m = 4. The true DOA parameter θ3 = [18◦ 36◦ 60◦], SNR =
[0 0 0] dB.
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