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ABSTRACT
This paper estimates the inverse filter of a signal transmis-

sion channel of a room driven by a speech signal. Speech sig-
nals are often modeled as piecewise stationary autoregres-
sive (AR) processes. The most fundamental issue is how to
estimate a channel’s inverse filter separately from the inverse
filter of the speech generating AR system, or the prediction
error filter (PEF). We first point out that by jointly estimat-
ing the channel’s inverse filter and the PEF, the channel’s
inverse is identifiable due to the time varying nature of the
PEF. Then, we develop an algorithm that achieves this joint
estimation. The notable property of the proposed method is
its robustness against deviation from the linear convolutive
model of an observed signal caused by, for example, obser-
vation noise. Experimental results with simulated and real
recorded reverberant signals showed the effectiveness of the
proposed method.

1. INTRODUCTION

Room reverberation degrades speech intelligibility or cor-
rupts characteristics inherent in speech. Therefore, can-
celling the effect of the reverberation is indispensable for a
variety of speech processing applications such as hands-free
telephony or automatic speech recognition. Since only a re-
verberant speech signal is available in many practical situa-
tions, the dereverberation should be based on blind process-
ing, which indicates a form of processing that operates solely
with a microphone signal.

Let a source signal be represented by s(n), and
K-tap impulse responses from the source to M mi-
crophones by {h1(k)}K

k=0, · · · ,{hM(k)}K
k=0. Microphone

signals x1(n), · · · ,xM(n) summarized in vector xxx(n) =
[x1(n), · · · ,xM(n)]∗, where superscript ∗ indicates the trans-
position of a vector or a matrix, can be modeled as

xxx(n) =
K

∑
k=0

hhh(k)s(n−k), (1)

where hhh(k) = [h1(k), · · · ,hM(k)]∗. This can be written by
using the vector, HHH(z) = ∑K

k=0 hhh(k)z−k, of the room transfer
functions (RTFs) as

xxx(n) = [HHH(z)]s(n), (2)

where [z−1] represents a backward shift operator. Then, we
may formulate the dereverberation as

y(n) =
L

∑
k=0

ggg(k)∗xxx(n− k), or y(n) = [GGG(z)∗]xxx(n), (3)

where ggg(k) = [g1(k), · · · ,gM(k)]∗ is a vector of the coeffi-
cients of the L-tap inverse filter set, GGG(z) = ∑L

k=0 ggg(k)z−k , of
the RTFs HHH(z). In the context of blind dereverberation, we
want to set up the transfer function vector GGG(z) so that it can
provide the inverse of HHH(z) up to a constant scale and delay
as

GGG(z)∗HHH(z) = αz−β (4)

without any specific knowledge about s(n) or HHH(z).
And now, a speech signal can be modeled as a piecewise

stationary autoregressive (AR) process [1]. In this model, a
signal in the ith time frame is described as

s(n) =
P

∑
k=1

bi(k)s(n− k)+ ei(n), or s(n) =
[ 1

1−Bi(z)

]

ei(n)

(5)
where 1−Bi(z) = 1−∑P

k=1 bi(k)z−k and ei(n) denote a pre-
diction error filter (PEF) and an innovation, respectively.
Thus, xxx(n) is the output of the system, which is a cascade
consisting of 1/(1−Bi(z)) and HHH(z) excited by ei(n). The
most fundamental problem is then how to identify the inverse
of HHH(z) separately from the PEF.

Several methods have been proposed for estimating the
inverse of HHH(z) and the PEF separately [2, 3, 4]. However,
these methods are sensitive to deviation from the linear con-
volutive model of Eq. (2) caused by indeterminacy of the
order K or observation noise. This characteristic makes it
difficult to apply these methods to a real environment. More
investigation is required to overcome this difficulty.

Another previously considered approach relies on the ob-
servation that the PEF 1−Bi(z) can be approximately com-
puted by applying linear prediction [1] directly to the ob-
served signals xxx(n). This is probably because short-term
correlations in reverberant speech signals mainly reflect the
speech characteristics whereas long-term correlations reflect
those of the reverberation. Based on this observation, meth-
ods have been proposed for estimating the PEF in every short
time frame followed by inverse filter set estimation [5, 6].
Although this class of method is robust even when the sig-
nals xxx(n) do not strictly obey the model given by Eq. (2), the
performance remains insufficient. The underlying reason for
this drawback is the mutual dependency between the estimate
of the RTF inverse filter set and estimates of the PEFs; pre-
cise PEF estimation requires a good estimate of the inverse
filter set and vice versa.

In this paper, we approach this problem by jointly esti-
mating GGG(z) and 1−Ai(z), by which we denote an estimate of
1−Bi(z). The time varying nature of the PEFs means we can
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Figure 1: Schematic diagram of overall system.

uniquely identify GGG(z) satisfying Eq. (4) and 1−Ai(z) equal
to 1−Bi(z). This becomes possible by equalizing the sig-
nal di(n) that is produced by filtering xxx(n) through GGG(z) and
1−Ai(z) (see Fig. 1) with the innovation ei(n). Since ei(n) is
unavailable in reality, the estimation of GGG(z) and 1−Ai(z) is
achieved instead by maximizing the loss function defined as
the mutual information between the samples of the sequence
{di(n)}i,n based on the mutual independence property of the
innovations. Importantly, because a small deviation from the
model of Eq. (2) causes only a slight change in the loss func-
tion, the estimation is expected to be robust to such a de-
viation. Direct optimization is very complicated, so we in-
troduce some approximations to derive a simple estimation
algorithm. The proposed method was tested on simulated
reverberant speech as well as real recordings. The results
showed that the proposed method improved the speech intel-
ligibility and reduced the spectral distortion from the clean
speech. Note that, in constrast to the previous dereverber-
ation method, which utilizes the time varying nature of the
PEFs [7], the proposed method can estimate the (delayed)
inverse of a nonminimum phase channel.

2. SYSTEM DECOMPOSITION BASED ON TIME
VARYING NATURE

Let us consider the system illustrated in Fig. 1. This dia-
gram shows the overall system for producing an innovation
estimate. Source signal s(n) and observed signals xxx(n) are
modeled as Eqs. (5) and (2), respectively. Then, the rever-
berant signal is passed into inverse filter set GGG(z) to generate
inverse filtered signal y(n) as Eq. (3). The inverse filtered
signal is further segmented into T short time frames. Finally,
the inverse filtered signal yi(n) in the ith time frame is filtered
by 1−Ai(z) to produce the estimate, di(n), of the innovation
ei(n) as

di(n) = yi(n)−
P

∑
k=1

ai(k)yi(n−k), or di(n) = [1−Ai(z)]yi(n).

(6)
We consider the case where both s(n) and y(n) are segmented
by a W -sample rectangular window. The relationship be-
tween s(n) and si(n) is as follows:

si(n) = s((i−1)W +n). (7)

The same applies to relationship between y(n) and yi(n).
We make the following assumptions:

P1) There is no zero common to all of the PEFs 1 −
B1(z), · · · ,1−BT (z).

P2) The innovation sequence {ei(n)}W
n=1 in the ith time frame

consists of zero-mean i.i.d. random variables. The distri-
bution of ei(n) is symmetric and supergaussian. Innova-
tions in different time frames are also mutually indepen-
dent, but not necessarily identically distributed.
Then, we can present the following theorem.

Theorem 1. If di(n) = αei−γ(n), and there is no zero com-
mon to 1−A1(z), · · · ,1−AT (z), then GGG(z)∗HHH(z) = αz−W γ .

Proof . di(n) = αei−γ(n) indicates

1−Ai(z)
1−Bi−γ(z)

GGG(z)∗HHH(z) = αz−W γ . (8)

Then, we have

(1−Ai(z))GGG(z)∗HHH(z) = (1−Bi−γ (z))αz−W γ . (9)

The no common zero condition for 1−Ai(z) and 1−Bi(z)
among different i’s leads directly to the theorem. 2

Remark . The constant delay β in Eq. (4) is here limited to a
multiple of the window length W .

As a consequence of Theorem 1, the inverse of HHH(z) can
be uniquely identified from GGG(z) and 1−Ai(z) computed so
that di(n) is equalized with αei−γ (n). If there is the term Ã(z)
common to all of the computed 1−A1(z), · · · ,1−AT (z), we
just have to replace GGG by GGGÃ(z). Thus, jointly estimating
GGG(z) and 1−Ai(z) enables us to estimate the inverse filter set
separately from the PEFs. The most noteworthy consequence
is that the joint estimation is vital for highly accurate inverse
filter estimation since both GGG(z) and 1−Ai(z) are mutually
dependent, and contribute to the production of di(n) cooper-
atively.

3. BLIND PROCESSING BASED ALGORITHM

3.1 Loss function

According to the above discussion, we need to estimate GGG(z)
and 1−Ai(z) so that di(n) is equalized with ei(n) up to a
constant scale and delay. However, since innovation ei(n) is
unavailable, we have to develop a criterion computed solely
by using di(n).

Based on condition P2), it would be natural to estimate
GGG(z) and 1−Ai(z) so that the inter-sample dependence of
{di(n)}i,n is minimized. This is mathematically formulated
as

{ĝgg, âaa} = argmin
ggg,aaa

I(d1(1), · · · ,d1(W ), · · · ,dT (1), · · · ,dT (W ))

subject to ||ggg|| = 1 and
1−Ai(z) is minimum phase, (10)

where ggg = [ggg1
∗, · · · ,gggM

∗]∗, gggm = [gm(0), · · · ,gm(L)]∗, aaa =
[aaa1

∗, · · · ,aaaT
∗]∗, aaai = [ai(1), · · · ,ai(P)]∗, and I(ξ1, · · · ,ξn) is

the mutual information between random variables ξ1, · · · ,ξn.
The first constraint of Eq. (10) determines the constant
scale arbitrarily. The second corresponds to the minimum
phase property of PEF 1−Bi(z). In the rest of Sect. 3.1,
we give a more specific representation of the loss function
I(d1(1), · · · ,dT (W )). Then, the estimation algorithm is ex-
plained in Sect. 3.2 to 3.4.

The mutual information in Eq. (10) is defined as

I(d1(1), · · · ,dT (W )) =
T

∑
i=1

W

∑
n=1

H(di(n))−H(ddd), (11)

where ddd = [dT (W ), · · · ,d1(1)]∗ and H(ξξξ ) denotes the differ-
ential entropy of random variable ξξξ . The output signal vec-
tor ddd is represented with respect to the inverse filtered signal
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vector yyy = [yT (W ), · · · ,y1(1)]∗ as

ddd = Ayyy, (12)

where

A =





AT O
. . .

O A1



 (13)

Ai =





















1 −ai(1) · · · −ai(P) O
. . .

. . .
. . .

1 −ai(1) · · · −ai(P)
. . .

. . .
...

. . . −ai(1)
O 1





















. (14)

Hence, the differential entropy H(ddd) can be written as

H(ddd) = H(yyy)+ logdetA. (15)

Let us denote the covariance matrix of multivariate random
variable ξξξ by Σ(ξξξ ). Then, equation Σ(ddd) = E{dddddd∗} =
AE{yyyyyy∗}A∗ = AΣ(yyy)A∗ leads to

logdetA =
1
2

(

logdetΣ(ddd)− logdetΣ(yyy)
)

. (16)

Substituting Eqs. (15) and (16) into Eq. (11) yields

I(d1(1), · · · ,dT (W )) =−
T

∑
i=1

W

∑
n=1

J(di(n))+J(yyy)

+K(d1(1), · · · ,dT (W )). (17)

In Eq. (17), J(ξξξ ) denotes negentropy [8], which is a measure
of the nongaussianity of random variable ξξξ . K(ξ1, · · · ,ξn) is
defined as

K(ξ1, · · · ,ξn) =
1
2

( n

∑
i=1

logυ(ξi)− logdetΣ([ξ1, · · · ,ξn]
∗)

)

,

(18)
where υ(ξ1), · · · ,υ(ξn) represent the variances of ran-
dom variables ξ1, · · · ,ξn, respectively. This is a measure
of the correlatedness of ξ1, · · · ,ξn [9]. If we put sss =
[sT (W ), · · · ,s1(1)]∗, we can readily obtain

J(yyy) = J(sss) = constant (19)

since yyy is a linear transformation of sss. By using Eqs. (17)
and (19), Eq. (10) reduces to

{ĝgg, âaa} = argmin
ggg,aaa

(

−
T

∑
i=1

W

∑
n=1

J(di(n))+K(d1(1), · · · ,dT (W ))
)

subject to ||ggg|| = 1 and
1−Ai(z) is minimum phase. (20)

In this way, the minimization of I(d1(1), · · · ,dT (W )) rep-
resented by Eq. (10) is equivalent to the minimization of
the loss function composed of the negentropy, J(di(n)),
of di(n) and the correlatedness, K(d1(1), · · · ,dT (W )), of
d1(1), · · · ,dT (W ) as in Eq. (20).

3.2 Estimation by alternating variables method

We solve the optimization problem of Eq. (20) by employ-
ing an alternating variables method. Let âaa(t) and ĝgg(t) denote
the estimates of aaa and ggg obtained after the tth iteration, re-
spectively. The estimates of the (t + 1)th iteration are then
computed by solving the following optimization problems:

âaa(t+1) =argmin
aaa

(

−
T

∑
i=1

W

∑
n=1

J(di(n))+K(d1(1), · · · ,dT (W ))
)

subject to ggg = ĝgg(t) and 1−Ai(z) is minimum phase
(21)

and

ĝgg(t+1) =argmin
ggg

(

−
T

∑
i=1

W

∑
n=1

J(di(n))+K(d1(1), · · · ,dT (W ))
)

subject to aaa = âaa(t+1) and ||ggg|| = 1. (22)

The algorithms used to accomplish Eqs. (21) and (22) are
given in Sect. 3.3 and 3.4, respectively.

It should be noted that if we set ĝgg(0) = [1,0, · · · ,0]∗ and
accept ĝgg(1) as a final estimate of ggg, the proposed method be-
comes similar to conventional ones [5, 6] in that the PEFs are
estimated directly from the observed signals. By updating
the estimates of ggg and aaa iteratively, however, the proposed
method becomes capable of the joint estimation of ggg and aaa,
which we have pointed out as being vital for highly accurate
inverse filter estimation.

3.3 Estimation of prediction error filters

In solving the optimization problem of Eq. (21), we only
minimize the second term, K(d1(1), · · · ,dT (W )), of the
loss function. This is because minimizing the first term
−∑T

i=1 ∑W
n=1 J(di(n)) might make 1 − Ai(z) nonminimum

phase since the negentropy J(di(n)) is related to the higher
order statistics of di(n).

From Eq. (18), K(d1(1), · · · ,dT (W )) is represented as

K(d1(1), · · · ,dT (W )) =
1
2

( T

∑
i=1

W

∑
n=1

logυ(di(n))− logdetΣ(ddd)
)

.

(23)
Because the determinant of an upper triangular matrix is the
product of its diagonal components, we have logdetA = 0
from Eqs. (13) and (14). Substituting this relation into
Eq. (16) leads to

logdetΣ(ddd) = logdetΣ(yyy) = constant. (24)

Thus, the minimization of K(d1(1), · · · ,dT (W )) is equiva-
lent to the minimization of the variance of di(n). This min-
imization is accomplished by applying the linear prediction
to the inverse filtered and segmented signal yi(n). It should
be noted that the linear prediction guarantees 1−Ai(z) to be
minimum phase [1].

3.4 Estimation of inverse filter set

When solving the optimization problem of Eq. (22), the
term K(d1(1), · · · ,dT (W )) is negligible compared with
∑T

i=1 ∑W
n=1 J(di(n)) since K(d1(1), ·,dT (W )) is minimized in
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the previous estimation of aaa. Based on P2) and by using the
Gram-Charlier expansion, the negentropy J(di(n)) can be ap-
proximated by [8]

J(di(n)) '
κ4(di(n))2

48υ(di(n))4 + constant, (25)

where κ4(ξ ) denotes the kurtosis of random variable ξ . Be-
cause the innovation of a speech signal is supergaussian as in
P2), we solve the following optimization problem:

ggg(t+1) = argmax
ggg

Q subject to aaa = âaa(t) and ||ggg|| = 1, (26)

where

Q =
1
W

T

∑
i=1

W

∑
n=1

κ4(di(n))

υ(di(n))2 . (27)

Q is maximized by using the gradient method. Based
on the stationarity assumption in each time frame, the nor-
malized kurtosis κ4(di(n))/υ(di(n))2 is approximated by its
sample estimate 〈di(n)4〉/〈di(n)2〉2−3, where 〈·〉 denotes an
averaging operator. By calculating the derivative of Q '

∑T
i=1〈di(n)4〉/〈di(n)2〉2 − 3 with respect to ggg, we have the

following update equation:

ggg′ = ggg〈u〉 +η∇Qggg(ggg
〈u〉), (28)

ggg〈u+1〉 =
ggg′

||ggg′||
(29)

where

∇Qggg =

[

∂Q
∂g1(0)

, · · · ,
∂Q

∂g1(L)
, · · · ,

∂Q
∂gM(0)

, · · · ,
∂Q

∂gM(L)

]∗

(30)

∂Q
∂gm(k)

=
T

∑
i=1

4
〈di(n)2〉4

(

〈di(n)3vmi(n− k)〉〈di(n)2〉2

−〈di(n)4〉〈di(n)2〉〈di(n)vmi(n− k)〉
)

(31)

vmi(n) =xmi(n)−
P

∑
k=1

ai(k)xmi(n− k) (32)

xmi(n) =xm((i−1)W +n), (33)

u is an iteration number, and η is a step size. Note that the
update procedure defined by Eq. (28) to (33) is different from
the procedure derived in [6] in that the former explicitly em-
ploys framewise kurtosis normalization. The framewise nor-
malization would be important since the variance of the in-
novation ei(n) changes frame by frame.

4. EXPERIMENTAL RESULTS

We conducted experiments to evaluate the dereverberation
performance of the proposed method. Male and female
speech signals of Japanese sentences taken from the ASJ-
JNAS database were used as the clean speech signals. These
speech signals satisfied the assumptions P1) and P2) well.
The signals were sampled at 8 kHz and quantized with 16-
bit resolution. We first show results obtained by using sim-
ulated reverberant speech signals in order to assess the dere-
verberation performance of the proposed method. Then, we
also present results obtained with reverberant speech signals
recorded in a real room.
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Figure 2: D50 as a function of the number of iterations.

4.1 Simulated reverberant speech

The microphone signals were simulated by convolving the
clean speech signals with impulse responses measured in a
reverberation room. The room size was 4.45×3.55×2.5 m.
The distance between the loudspeaker and the microphones
was about 3.2 m. The reverberation time was around 0.5 sec.
The microphone signal was prewhitened before it entered the
proposed algorithm in order to stabilize the gradient algo-
rithm of Eqs. (28) and (29).

The following parameter settings were used: M = 4,
L = 1000, W = 200, P = 16. The variables ggg and aaa were
alternated 10 times. The estimate of ggg(t+1) was updated 20
times by using Eqs. (28) and (29). The initial estimate of the
inverse filters was set as

gm(k) =

{

1/M if k = 200
0 otherwise

. (34)

Although we used M = 4 microphones here, the proposed
method is potentially applicable to M = 1. The main advan-
tage of using multiple microphones rather than just a single
microphone is the ability to estimate an inverse filter with a
small number of observed signal.

The dereverberation performance was evaluated by using
D50 [10], which is a measure related to speech intelligibility.
The measure D50 is defined as

D50 =

∫ 50 msec.
0 f (t)2dt

∫ ∞
0 f (t)2dt

×100 (%), (35)

where { f (t); t ≥ 0} denotes an arbitrary impulse response.
Figure 2 shows the dereverberation performance against

the number of iterations. The dereverberation performance
improved with the number of iterations under all conditions.
The iteration was effective especially when a small amount
of speech was available.

4.2 Recorded reverberant speech

Finally, we show results obtained by applying the proposed
method to reverberant speech recorded in the same room with
a slightly different speaker and microphone configuration.
The reverberation time was around 0.45 sec. The (noisy)
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Figure 4: (Top panel) SDs as a function of time for female
speech. The inverse filter set was estimated by using 20-sec
speech. (Bottom panel) Speech waveform of corresponding
portion.

speech level was 25 to 35 dB above the background noise
level. The parameters were set as in the last section.

The dereverberation performance was measured in terms
of the spectral distortion (SD) between 1/(1 − Bi(z)) and
1/(1−Ai(z)) defined as

SD =

√

√

√

√

1
F

F−1

∑
f =0

(

20log |PA( f )|−20log |PB( f )|
)2

(dB), (36)

where PA( f ) = 1/(1−Ai(e
jπ f
F )), PB( f ) = 1/(1−Bi(e

jπ f
F )),

and F is the number of frequency bins. F was set at 256.
Figure 3 shows the SDs averaged over all the time frames.

It can be seen that the SDs were improved by the proposed
method. More importantly, the SDs were small during the
voiced portions of the speech (see Fig. 4). This indicates
that the proposed method recovered the speech characteris-
tics well. Figure 5 shows example speech spectrograms. The
inverse filtered speech seems to be dereverberated well.

5. CONCLUSIONS

We have described a novel blind dereverberation method for
speech signals. The method jointly estimates an inverse filter
of a signal transmission channel and PEFs of the speech sig-
nals in every short time frame. A simple iterative estimation
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Figure 5: Portions of spectrograms of female clean speech
(top), its reverberant version (SD = 5.39 dB, middle), and
dereverberated version (SD = 3.26 dB, bottom).

procedure was derived. The proposed method achieved good
dereverberation for simulated reverberant speech as well as
real recorded speech.
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