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ABSTRACT
Multiuser detection can be described as a quadratic optimization
problem with binary constraint. Many techniques are available to
find approximate solution to this problem. These techniques can
be characterized in terms of complexity and detection performance.
The “efficient frontier” of known techniques include the decision-
feedback (DF), branch-and-bound (BB) and probabilistic data asso-
ciation (PDA) detectors. We propose a novel iterative multiuser de-
tection technique based on joint deregularized and box-constrained
solution to quadratic optimization with iterations similar to that
used in the nonstationary Tikhonov iterated algorithm. The deregu-
larization maximizes the energy of the solution; this is opposite to
the Tikhonov regularization where the energy is minimized. How-
ever, combined with box-constraints, the deregularization forces the
solution to be close to the binary set. Our development improves
the “efficient frontier” in multiuser detection, which is illustrated
by simulation results.

1. INTRODUCTION

In multiple-access CDMA systems, multiuser detection is capable
of providing high detection performance [1]. The multiuser detec-
tion theory has been well developed in the past two decades. How-
ever, the complexity of multiuser detection is still a very important
issue. The complexity issue has been addressed in recent papers
[2, 3, 4] and others, where new efficient multiuser detectors were
proposed. Comparison of advanced multiuser techniques in [5], in
terms of group detection error and complexity has shown that an
“efficient frontier” of multiuser detectors is primarily composed of
the decision-feedback (DF) detector [6], probabilistic data associa-
tion (PDA) detector [2], and branch and bound (BB) detector [3].
The DF detector is the simplest one, the BB detector provides the
best detection performance, while the PDA detector gives a good
detection performance with simpler implementation than the BB
detector [5].

In this paper, we propose a novel algorithm that solves the
quadratic optimization problem incident to multiuser detection with
near optimal detection performance and low computational com-
plexity. The novel iterative multiuser detection technique is based
on joint deregularized and box-constrained solution to quadratic op-
timization with iterations similar to that used in the nonstationary
Tikhonov iterated algorithm [7, 8]. The deregularization maximizes
the energy of the solution; this is opposite to the Tikhonov regular-
ization where the energy is minimized. However, combined with
box-constraints, the deregularization forces the solution to be close
to the binary set. The proposed algorithm exploits both the advan-
tages of the bootstrap detector [9] based on the nonstationary it-
erated Tikhonov regularization, and the box-constrained algorithm
based on Gauss-Seidel (GS) iterations [10]. It achieves a perfor-
mance very close to the BB detector with a complexity lower than
the PDA detector; this significantly improves the “efficient frontier”
defined in [5].

Although only multiuser detection problems are addressed in
this paper, the algorithms are applicable to a wide class of ap-
plications since many communication problems can be reduced to
quadratic optimization with similar constraints.

2. PROBLEM FORMULATION

The matched-filter output at a symbol synchronous CDMA receiver
is given by the K-length vector

y = Rb+n (1)

where the vector b ∈ {−1,+1}K contains bits transmitted by the K
users, R is a positive definite signature waveform correlation ma-
trix, and n is a real-valued zero-mean Gaussian random vector with
covariance matrix σ2R. The model (1) also describes multiuser
communications in multi-antenna, flat and frequency-selective fad-
ing channels [11]. The MIMO communication [12] and other com-
munication scenarios (see, e.g., [13]) can also be modeled by (1).
For simplicity, we concentrate on multiuser detection with BPSK
modulation in this paper.

The optimal ML multiuser detector estimates the vector b by
minimizing the following quadratic function [1] with binary con-
straints, b ∈ {−1,+1}K ,

b̂ = arg min
b∈{−1,+1}K

{
1
2
bT Rb−yT b

}
. (2)

Although the ML detector provides the best detection performance,
it is not practical due to its high complexity [1]. The decorrelating
detector is a relatively simple technique that solves the same prob-
lem with no constraint, b ∈ R K [1]. However, the performance of
the decorrelating detector is not always satisfactory. In general, to
achieve a better performance, one should tighten the constraint on
the solution set, which consequently results in an increased com-
plexity of the multiuser detector.

The performance and complexity trade-off can be measured by
the “efficient frontier”, defined in [5]. Among the multiuser de-
tectors that touch the efficient frontier, the BB detector provides
the optimal performance with a low average complexity. Unfortu-
nately, its worst case complexity is exponential in the number of
users, which makes it infeasible for practical implementation. On
the other hand, the DF detector provides good performance with a
low complexity, while the PDA detector achieves near optimal per-
formance with a moderate complexity.

3. THE BOOTSTRAP AND THE BOX-CONSTRAINED
DETECTORS

In this section, we introduce the recently proposed bootstrap detec-
tor [9] and the box-constrained detector based on GS iterations [10].
Although both the detectors are able to provide high detection per-
formance, none of the individual detectors can touch the efficient
frontier. However, we will show that the combination of the two
methods complemented with deregularization gives an outstanding
suboptimal detector.

3.1 Bootstrap Detector

The MMSE detector solves the following unconstrained quadratic
optimization problem [1]

b̂ = arg min
b∈R K

{
1
2
bT Rb−yT b+

λ
2
bTb

}
(3)
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with the regularization term (λ/2)bT b that promotes solutions with
small energy; λ = σ2 > 0 is the regularization parameter. A more
accurate solution to the initial optimization problem is obtained by
using the iterated Tikhonov regularization [7, 8]. In this method, (3)
is generalized to a sequence of unconstrained optimization, with the
nth iteration given by the following equation

b̂(n) = arg min
b∈R K

{
1
2
bT Rb− (y+λ b̃(n−1))T b+

λ
2
bT b

}
(4)

where b̂(0) = 0, b̃(n−1) = b̂(n−1), and λ > 0. Compared with (3),
equation (4) allows the solution to be directed toward the solution
b̃(n−1) found at the previous iteration. This becomes clearer when
the solution of the problem in (4) is represented as [7]

b̂(n) = b̃(n−1) +∆(n−1)
b (5)

where ∆(n−1)
b is the solution of

(R+λI)∆(n−1)
b = r(n−1) (6)

with r(n−1) being the residual vector, r(n−1) = y−Rb̃(n−1).
It is seen that for n = 1 and λ = σ2, we obtain the MMSE

solution, while for n > 1, the new solution b̂(n) lies in the vicinity
of the solution b̂(n−1) found in the previous iteration.

The bootstrap multiuser detector proposed in [9] is similar to
the algorithm presented in (4), however, it differs from (4) on the
following two aspects.

1) Regularization parameter λ varies with iterations, λ0 = σ2,
λn = nσ2 for n ≥ 1. This is known as the nonstationary iterated
Tikhonov regularization [8].

2) At every iteration, box-constraints are used to obtain a semi-
hard version of b̂(n):

b̃(n)
k =




+1 if b̂(n)
k > nα

−1 if b̂(n)
k < −nα

b̂(n)
k otherwise

(7)

where b̂(n)
k and b̃(n)

k are respectively the kth elements of vectors b̂(n)

and b̃(n), and α < 0 is a pre-determined parameter of the method.
The final solution is obtained via b̂ = sign{b̃(N)} where N is the
number of iterations.

The solution to (4) at the nth iteration (n > 0) can be regarded
as an unconstrained solution to the following equation

(R+λI) b̂(n) = y+λ b̃(n−1). (8)

Obtaining a direct solution of (8) requires K3 FLOPS. Conse-
quently, such a direct implementation of the bootstrap detector with
N iterations requires (N +1)K3 FLOPS.

In order to reduce the complexity of the bootstrap detector,
(8) can be solved approximately using the Gauss-Seidel (GS) it-
erations [14] within a bootstrap iteration. Note that GS iterations
are extensively used in signal processing, and have been an efficient
technique in multiuser detection [15], MIMO detection [16], and
adaptive filtering [17]. Let Rb = y be the equation to be solved.
Starting from an arbitrary initial vector, say b(0) = 0, the ( j +1)th
GS iteration is given by

b( j+1)
i =

1
Rii

(
yi −

i−1

∑
k=1

Rikb( j+1)
k −

K

∑
k=i+1

Rikb( j)
k

)
(9)

where yi is i-th element of the vector y, b( j)
i is i-th element of

the vector b( j), Rik is (i,k)-th element of the matrix R, and

i = 0, . . . ,K −1. Assume that NGS Gauss-Seidel iterations are used
for every bootstrap iteration, j = 1, . . . ,NGS, then the complexity of
the bootstrap detector with N bootstrap iterations is in the order of
2(N +1)NGSK2 FLOPS. If we choose NGS to be less than K/2, the
complexity of the detector with GS iterations will be less than that
of the direct implementation.

To simplify the algorithm further, when solving equation (8) for
the (n+1)th bootstrap iteration, we initialize the GS iteration with
the semi-hard solution (7) obtained from the nth bootstrap iteration.
When the initial value is close to the equilibrium, the number of GS
iterations for solving (8) can be significantly reduced. However, to
ensure an accurate solution at the initial part of the bootstrap de-

tector, we use N(init)
GS GS iterations for the first step, which solves

the classical MMSE detection problem, and use N(bootstrap)
GS GS it-

erations for other bootstrap updates. The overall complexity of the

algorithm is 2
(

N(init)
GS +NN(bootstrap)

GS

)
K2 FLOPS.

Below we will compare the performance of the three detectors:
1) a bootstrap detector with direct implementation (direct iterated);
2) a bootstrap detector implemented with GS iterations with zero
initialization of the solution at every bootstrap iteration (GS-zero it-
erated); and 3) a bootstrap detector implemented with GS iterations
and the semi-hard initialization of the solution at every bootstrap
iteration (GS-SH iterated).

3.2 Box-Constrained Detector with Nonlinear GS Iterations

A box-constrained multiuser detector solves the following opti-
mization problem

b̂ = arg min
b∈[−1,+1]K

{
1
2
bT Rb−yT b

}
. (10)

In the box-constrained detector with nonlinear GS iterations [10],
every such iteration consists of two steps. At the first step, the clas-
sic GS iteration is performed:

b( j+1)
i =

1
Rii

(
yi −

i−1

∑
k=1

Rikb̃( j+1)
k −

K

∑
k=i+1

Rikb̃( j)
k

)
. (11)

At the second step, the semi-hard update is performed:

b̃( j+1)
i =




+1 if b( j+1)
i > +1

−1 if b( j+1)
i < −1

b( j+1)
i otherwise.

(12)

4. DEREGULARIZATION AND PROPOSED DETECTOR

The box-constraint tightens the solution set which results in signifi-
cant improvement of the detection performance over unconstrained
decorrelating and MMSE detectors. An additional tightening of the
solution set could further improve the performance. Note that the
constraint on each b ∈ {−1,+1}K is equivalent to b2

i = 1 which
implies bT b = K [10]. Then, the additional tightening of the solu-
tion set can be achieved by introducing the following optimization
problem

b̂ = arg min
b∈[−1,+1]K

{
1
2
bT Rb−yT b+

λ
2

(K−bT b)
}

(13)

where λ > 0. Solving (13) is equivalent to solving the problem

b̂ = arg min
b∈[−1,+1]K

{
1
2
bT (R−λI)b−yT b

}
. (14)

The replacement of the matrix R by the matrix R− λI implies
that we solve a deregularized optimization problem. Note that
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(K − bT b) ≥ 0 when the box-constraint is applied, i.e., for any
b∈ [−1,+1]K . Therefore, when the box-constraints are considered,
classical regularization used in the MMSE detector does not always
result in a performance improvement. Instead, the attempt of min-
imizing the objective function with an additional term (λ/2)bT b
(as done in (3)) can make the detection performance even worse. It
is intuitively clear that if a desired solution belongs to the binary set
{−1,+1}K and we constraint solutions to be in the K-dimensional
box [−1,+1]K , then a solution with higher energy bT b is prefer-
able as it lies closer to the binary set. Thus we are interested in
an objective function that promotes solutions with higher energy.
To achieve this, we propose the deregularization (14). The deregu-
larization parameter λ is chosen as in the MMSE detector, λ = σ2.
This optimization can be implemented by using the box-constrained
algorithm with nonlinear GS iterations (see Section 3.2) with the
matrix R replaced by R− λI. The final solution b̃ can be ob-
tained by projecting the vector b̂ to the binary constraint set, i.e.,
b̃ =sign[b̂].

This approach results in a novel multiuser detector with im-
proved performance with respect to the box-constrained multiuser
detector. However, the detection performance can be further im-
proved by applying iterations similar to those in the bootstrap de-
tector. Specifically, we now apply the combination of the deregu-
larization and box-constraint to bootstrap iterations.

At the zero iteration, the proposed detector solves the optimiza-

tion problem (14) by using N(init)
GS nonlinear GS iterations described

by (11) and (12). In further bootstrap iterations (n = 1, . . . ,N), the
detector solves the optimization problem

b̂(n) = arg min
b∈[−1,+1]K

{
1
2
bT (R−λnI)b −(y+λnb̂

(n−1))T b
}

(15)

which is implemented by the box-constrained algorithm with the
matrix R replaced by R − λnI and vector y replaced by y +
λ b̂(n−1); thus, the following equation is solved with box-constraint:

(R−λnI) b̂(n) = y+λnb̂
(n−1). (16)

For solving this equation at every bootstrap iteration, we use

N(bootstrap)
GS nonlinear GS iterations described by (11) and (12); typ-

ically, N(bootstrap)
GS << N(init)

GS . The deregularization parameter is
λn = nσ2. The final solution is obtained by applying the hard deci-
sion: b̃ =sign[b̂(N)].

5. NUMERICAL EXAMPLES

In this section, we present computer simulation examples to show
the detection performance and complexity of the proposed mul-
tiuser detector in comparison with the BB, PDA, and DF detectors.
In Example 1 below, we demonstrate constellation diagrams for
different multiuser detectors, including the proposed GS-BD (Box-
constrained with Gauss-Seidel iterations and non-stationary iterated
deregularization) iterated detector, for a simple two-user scenario.
In Examples 2,3, and 4, we use the simulation scenario from [5].
In this highly loaded scenario, there are K = 60 users with random
binary spreading codes with the spreading factor SF = 63. The
spreading codes are randomly generated, and then kept unchanged
over all simulation trials.

Example 1. Fig.1 compares constellation diagrams in different
multiuser detectors for a two-user scenario (K = 2) at a signal-to-
noise ratio (SNR) of 7 dB. This illustrates the performance improve-
ment due to introduction of box-constraints, the proposed deregu-
larization, and bootstrap iterations. For the MMSE detector with the
regularization (3), we can see an approximately symmetrical scat-
tering of symbol estimates around the optimal set {−1,+1}2. In the
box-constrained detector, all symbol estimates are placed within the
box [−1,+1]2. In the box-constrained detector with deregulariza-
tion (GS-BD, N = 0), the deregularization (14) forces the symbol

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

user 1

us
er

 2

(a) MMSE

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

user 1

us
er

 2

(b) Box-constraint

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

user 1

us
er

 2

(c) GS-BD, N = 0

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

user 1

us
er

 2

(d) GS-BD iter-
ated, N = 4

Figure 1: Constellation diagrams for a two-user scenario; SNR = 7
dB.
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Figure 2: Group detection error vs worst-case complexity; SNR=10
dB, K = 60, SF=63.

estimates to have a high energy, consequently, they are on average
closer to the optimal set than in the box-constrained detector. In the
GS-BD iterated detector, after N = 4 bootstrap iterations, most of
symbol estimates are on the boundary of the closure of the binary
set, and close to the corner points.

Example 2. Fig.2 shows the group detection error relative to
the detector complexity at SNR=10 dB. In the direct bootstrap de-
tector, the number of bootstrap iterations takes on values N = 10,
20, and 30, the parameter α = −0.3. As N increases, the com-
plexity increases and the detection performance improves; however,
further increase in N beyond N = 30 does not improve the detec-
tion performance. In the GS-zero bootstrap detector, the number
of GS iterations is either NGS = 5 or NGS = 10, and the number of
bootstrap iterations, N = 10 or N = 30. GS iterations reduce the
complexity without degradation in the detection performance. The
GS-SH bootstrap detector allows further reduction in the complex-
ity without performance degradation. In this detector, the param-

eter N(init)
GS = 5,10 and N(bootstrap)

GS = 1,2 is used. It is interesting
to observe that, for non-zero bootstrap iterations, usually only two
GS iterations are enough to achieve the best performance. We also
considered the initialization of the bootstrap detector by the vector
sign[y] (matched-filter solutions); however, this did not improve the
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Figure 3: Group detection error vs worst-case complexity for the
GS-BD iterated detector; SNR=10 dB, K = 60, SF=63.
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Figure 4: Group detection error vs worst-case complexity; SNR=7
dB, K = 60, SF=63.

detector performance. The DF detector has the lowest complexity,
but its detection performance is poor. Although the BB detector
gives the optimal performance with a low average complexity, its
worst-case complexity is exponential in the number of users. It is
seen that the GS-SH bootstrap detector outperforms the BB detec-
tor and the PDA detector in the worst-case complexity. However,
the detection performance of the bootstrap detectors cannot achieve
that of the BB and PDA detectors.

Example 3. Fig.3 shows the performance of the proposed
GS-BD iterated detector. The number of bootstrap iterations in
the detector varies as N = 0,1,2,4. The other parameters are:

(N(init)
GS ,N(bootstrap)

GS ) = (10,2) or (20,4). We can see that the GS-
BD iterated detector significantly outperforms the GS-SH bootstrap
detector (the most efficient version of the bootstrap detector) in both
the detection performance and worst-case complexity. It also out-
performs other detectors in the worst-case complexity. The only
exception is the DF detector, but its detection performance is poor
in this scenario. It is also seen that the use of box-constraints and
deregularization allows reduction in the number of bootstrap itera-
tions from 30 to 4 to achieve the best possible performance. With
4 bootstrap iterations, it achieves the same performance as the BB
detector, i.e., it achieves the performance of the optimal ML detec-
tor. The complexity of the GS-BD iterated detector, approaching
the optimal ML performance, is approximately K3.2 FLOPS.

Example 4. Fig.4 demonstrates the performance at SNR=7 dB.
At low SNRs, the complexity of the BB detector significantly in-
creases. Therefore, simulation results are shown for a BB detector

with upper bounded complexity [5] (and, as a result, a worse de-
tection performance) for several complexity bounds. The detection
performance of the proposed detector is significantly better than that
of the other detectors. The complexity of the proposed detector is
significantly less than that of other detectors, except the DF detector
which, however, possesses a poor detection performance.

6. CONCLUSIONS

We have considered multiuser detection as the quadratic optimiza-
tion problem and proposed its solution based on combined box-
constrained minimization and non-stationary iterated deregulariza-
tion. The latter is based on maximizing the solution energy, which
is opposite to the classical MMSE detector with the Tikhonov reg-
ularization, where the energy of the solution is minimized. The
deregularization when combined with box-constraints well suites
to the formulation of the optimal ML detection. This combination
of constraints and deregularization forces the symbol estimates lie
close to the binary set.

We have proposed a computationally efficient multiuser detec-
tor that uses the nonlinear Gauss-Seidel iterations combined with
the non-stationary iterated deregularization. It achieves a detection
performance close to that of the optimal ML detector. Performance
of the proposed detector, in terms of group detection error and
worst-case complexity, has been investigated and compared with
that of such advanced techniques as the decision-feedback detector,
the branch-and-bound detector and the probabilistic data associa-
tion detector. Our development significantly improves the “efficient
frontier” in multiuser detection. The complexity of the proposed
detector, approaching the optimal ML performance, is only K3.2

FLOPS.
The performance of the proposed detector can be improved by

using the optimal non-stationary deregularization parameter. How-
ever, such optimization is a complicated analytical problem that is
the subject of a further work. Another problem to be solved relates
to the fact that due to deregularization, the optimization problem
may be non-convex, which also requires further investigation.
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