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ABSTRACT 
This paper describes a new method for analysing gene ex-
pression temporal data sequences using Probabilistic Boo-
lean Networks. Switch-like phenomena within biological 
systems result in difficulty in the modelling of gene regulatory 
networks.  To tackle this problem, we propose an approach 
based on so called ‘purity functions’ to partition the data 
sequence into sections each corresponding to a single model 
with fixed parameters, and introduce a method based on re-
verse engineering for the identification of predictor genes 
and functions.  Furthermore, based on the analysis of  
Macrophage gene regulation in the interferon pathway, we 
develop a new model extending the PBN concept for the in-
ference of gene regulatory networks from gene expression 
time-course data under different biological conditions.  In 
conjunction with this, a new approach based on constrained 
prediction and Coefficient of Determination to identify the 
model from real expression data is presented in the paper. 

1. INTRODUCTION 

In recent years biological microarray technology has 
emerged as a high-throughput data acquisition tool in bioin-
formatics.  It enables the measurement of the expression 
level of thousands of genes simultaneously in a cell at a se-
ries of time points in a specific biological process [1].   It has 
led to a dramatic revolution in the field of systems biology so 
that computational methods for modelling and simulating 
gene regulatory networks have been developed to study gene 
regulation.  This has constituted a key aspect of genomic 
signal processing [2].  

Recently, a modelling approach defined as Probabilistic Boo-
lean Networks (PBNs) has been proposed for modelling gene 
regulatory networks [3].  This technology, an extension of 
Boolean Networks [4], is able to capture the time-varying 
deterministic dependencies as well as uncertainties relative to 
the governing model by a series of logic based predictor 
functions. 

Cells maintain their phenotype stability until the phenotype is 
switched in response to an external stimulus.  Under the 
stimulus, there are switch-like transitions observed within 
biological systems.  Therefore, Context-Sensitive PBN mod-
elling was proposed for inferring genetic regulatory networks 
in some gene expression data with different contexts for the 

cell [5].  The Context-Sensitive PBN model is a collection of 
Boolean Networks (BNs) with fixed Boolean functions set in 
a time-course.  Our modelling approach is an extension of 
this concept. 

For the construction of a model of gene regulatory behaviour 
for data under different biological conditions, it is essential to 
be able to partition the data into sections corresponding to 
different contexts of the underlying model.  Therefore, we 
firstly proposed a method for partitioning the sample gene 
expression data with multi-context into different segments 
over a time horizon.  Following partition, the individual con-
stituent models may be fitted to each partitioned section re-
spectively.  A method is proposed by which the parameters of 
a PBN may be inferred directly from temporal gene expres-
sion data.  In this paper we demonstrate the procedure by 
reverse engineering the process and recovering all the com-
plexities of the generating model.  After that, we apply mod-
elling techniques to macrophage gene expression data under 
three different biological conditions.  The results reveal that 
there exists a ‘phase-changing’ phenomenon on the regulator 
activities caused by underlying mechanisms or external in-
puts.  To capture such phenomenon, we have extended the 
Context-Sensitive PBN concept to allow the network selec-
tion probability to vary with biological conditions.  Finally, 
we have developed an approach using the Coefficient of De-
termination (COD) [6] for the inference of the model from 
the small amounts of experimental data. 

Our experiments are carried out on two kinds of data.  Firstly, 
we verify our technique by conducting experiments on a syn-
thetic temporal gene expression data sequence generated by 
Genomic Signal Processing Laboratory based at Texas A&M 
University.  According to the results of the analysis on these 
simulated data, we then developed a further experiment using 
real gene expression data supplied by the Scottish Centre for 
Genomic Technology and Informatics (GTI), based at Uni-
versity of Edinburgh.  The paper is organized as follows.  In 
Section 2, a description of an experiment on simulated data is 
provided.  In section 3, we present the experiment on real 
data.  Section 4 contains some concluding remarks. 

2. VERIFICATION WITH SIMULATED DATA 

The simulated data is modelled by a PBN [3] consisting of M 
Boolean Networks (BNs) BN1…BNM.  There are n genes 
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g1,…, gn , the regulatory activities of which are controlled by 
a set of Boolean functions of k genes, where k<n.  The data is 
modelled through a sequential process whereby the state of 
the model at time t is determined by its previous state at time 
t-1.  It is a discrete-time stochastic process with the Markov 
property.  The model parameters, that is the specific k genes 
which control each gene and the set of functions used to de-
termine their next states are fixed for substantial periods of 
time. Under external stimuli or hidden mechanisms, periodi-
cally a ‘switch point’ occurs where both the function and the 
k predictor genes governing each gene change so that gene 
activity switches to another BN and therefore a different 
regulatory rule is adopted. 
 
The first step in the process is to partition the time course 
data into so called ‘pure’ segments by finding these switch 
points.  A pure segment corresponds to data generated from a 
single BN.  
 
2.1 Partitioning Data 
 
The important point to note here is that the characteristics of 
a BN may be determined by the pairwise transitions of the 
network.  For a BN with fixed parameters the state of the 
network St at time t, must always be followed by the same 
state, St+1, at time t+1 except when the transition is perturbed 
by mutation or noise.  Therefore a state transition matrix 
compiled over a pure temporal data sequence and showing 
which state St+1, at time t+1 time follows St at time t, will be 
sparse containing only one significant entry per line plus 
some entries due to noise.  Typically the N×N  (N=2n) tran-
sition matrix Y(t1,t2)would have the overall structure shown 
below, 
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where  aij indicates the number of state transitions from state 
i to state j during a time horizon i.e. between time step t1 and 
time step t2. State i, j are in a finite state space {1, 2, 3,…,2n}.  
The transitions of the state in the system periodically cycle in 
between several attractors. Therefore, the majority of transi-
tions will be zero and most non zero values will correspond 
to transitions aij driven by the model, the remainder will be 
due to perturbation or noise. 
 
Identification of one significant transition per state results in 
a one to one mapping linking pairs of successive gene states.  
Sj = �(Si)  Assuming that the system consists of n genes, 
S=(g1, g2…..gn )  then its state at time t +1, may be written as 
a function of a subset of  k genes, where k < n.   
 

S t+1=(g1, g2…..gn )
t +1                                      (1) 

The state of each gene g at time t +1 is a function of the 
genes at time t.  More specifically it is a function of a subset 
of  k genes 
S t+1=(F1((g1,g2…gn)

t),F2((g1, g2…gn)
t),…Fn((g1, g2…..gn)

t))t +1                                                                         

(2) 
 
Given sufficient data, the functions and the subset k may be 
determined by Boolean reduction.  
 
The objective is to identify points within the sequence where 
the model parameters change and between which the data is 
pure, i.e. derived from a single BN with fixed parameters.  
We now seek to define a purity measure which determines 
the likelihood that the data lying between two data points is 
‘pure’.  The measure proposed is  
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where Pij is the value of the largest (major) value on each 
row j in column i, Qij is the value of the second peak and aij is 
the value of the transition matrix.    
 
Consider a data sequence with T points generated from two 
BNs.  The first section of the sequence, from 1 to t’ (t’ 
∈[1,T]) has been generated from the first BN and the re-
mainder of the sequence from t’+1 to T has been generated 
from the second BN.  Suppose there is one switching point, 
the unknown switchover point is determined by splitting the 
sequence into two parts at point z.  The value of z is a vari-
able which may take any value from 1 to T and it is an esti-
mate of the value of t’.  z is varied and the data set before and 
after it are mapped into two different transition matrixes 
W(z)and V(z). W(z)=Y(1,z), V(t)=Y(z+1,T).  The definition of 
Matrix Y has been shown in the left.  The ideal purity factor 
is one which is maximised for both W(z) and V(z) when z= t’. 
This is shown in Figure 1.  Where a data set consists of more 
than two pure sequences then it must be partitioned itera-
tively in order to determine the set of pure sequences.   
 
Once the sequence has been successfully partitioned into 
pure segments then the process of identifying the functions 
and inputs can be carried out by Boolean reduction.  
 

 
 

Fig 1.   Data sequence divided by a sliding point t and Transition 
matrices produced for data on each side of the partition 
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2.2 Identification of Predictor Genes and Functions 
 
Having partitioned the gene state data into ‘pure subse-
quences’, it is now necessary to identify which subset, k of 
the n genes may best predict any given target gene.  This was 
carried out by identifying the k genes which best correlate 
with changes in the predicted gene.  It is based on a function 
which is minimized when the changes in the k genes speci-
fied most accurately coincide with changes in the predicted 
gene aggregated over each pure data subsequence. 
 
In the pure subsequence, the next state of gene g'i is a func-
tion of k genes, 
 

g'i = fi(ji(1), ji (2),., ji(k))                    (4) 
 
where  ji(k) are selection functions determining which k from 
n genes are used as inputs to the predictor function. 
 
According to the state transition matrix for each segmented 
‘pure’ subsequence of data, it is possible to create a current-
next state table for each pure subsequence. If the states are 
written in terms of their individual genes then a simple one to 
one mapping is produced from n genes to n genes. This was 
set out in Eqn (1) and (2). In the current-next state table (Ta-
ble 1), each line presents states of genes corresponding to 
gene activity profiles in the real measurements. It is clear that 
the next state of any gene g'i may be written as a function of 
all n predictor genes.  The problem is to determine which 
subset, k out of the n genes may best predict any given gene.  
 
A cost function R(k) is defined which is minimized when all 
the output gene values are the same for the same combination 
of k predictor genes.  
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Table 1 Current-Next state table 

The value of g'i  is either 0 or 1 as specified in the truth table.  
Hence the quantity )(kr

kg
 is minimized if  the outputs for a 

particular combination of inputs gk  are either all 0 or all 1.  
There are n!/(n-k)!k! ways of selecting k from n inputs. For 
small numbers of genes the k inputs may be chosen by full 
search and the cost function evaluated for every combination.  
For larger sets they are chosen through genetic algorithms to 
minimize the cost function.  In some cases the current-next 
state table is not fully defined. This means that the output is 
itself a don’t care term.  Tests have shown that the predictor 
genes may still be identified correctly even for 87.3% of 
missing data [7]. 
 
Once the subset of k predictor genes has been identified, the 
task of identification of predictor functions is a straightfor-
ward exercise in logic minimization [8]; made easier by the 
fact that k is small. 
 
2.3 Experiment Results 
 
Experiments were conducted on synthetic time-course data, 
generated at Texas A&M University.  The PBN consisted of 
4 BNs with n=8 and k  4. The data was processed using the 
method described. An example of the purity function value 
derived over a section of the data and clearly containing 5 
switch points in is given in Figure 2.  In this way the data 
was partitioned into pure segments.  The segments were ana-
lyzed to determine the k predictor genes and corresponding 
functions. Table 2 shows the resulting predictor genes and 
functions derived from the data for BN3 as compared to the 
actual functions. These were derived very accurately despite 
the fact that only 23% of the transitions for BN3 were ob-
served in the data. 
 

 
 

Fig.2. Purity function values for a 200,000 section of the data. 
   

BN3 (size 47661) 
Observed transition state: 58  (23%) 

Gene 
 

Actual 
Predic-
tor 
genes 

Predicted 
Predictor  
Genes 

Actual Functions Predicted Functions 

1 
2 
3 
4 
5 
6 
7 
8 

1,2,6,8
1,2 
5 
1,2,7,8 
5 
1,3,5,6 
3,4 
3,4,8 

1,2,6,8 
1,2 
5 
1,2,7,8 
5 
1,3,5,6 
3,4 
3,4,8 

0000010001101011 
0100 
10 
1111011010001100 
01 
1000000100110000 
1000 
00110101 

00000100011010** 
0100 
10 
1111011*100011** 
01 
100000010*11000* 
1000 
00110101 

 
Table 2. The predictor genes and predictor functions in BN3 

 
Switch Points 
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3. EXPERIMENTS ON REAL DATA 

3.1     Data Analysis and Model Definition 
 
In the experiments on real data, the gene expression data are 
taken from a hybridizations microarray study, in which bone 
marrow derived macrophages were exposed to three different 
biological conditions over 12 hours, with measurements 
made in 30 minute intervals. The three conditions were inter-
feron treatment only (INFg), viral infection with interferon 
treatment (C3X_INFg) and viral infection only (C3X).  All 
target genes and predictor genes come from a functional 
group containing 5 target genes in the data (Il12b, Cybb, 
G1p2, Itgam, Fcer2a).  Figure 3 shows how the regulatory 
activities of the genes vary under the 3 different biological 
conditions.  We found that most gene activities in interferon 
gamma treated samples were consistent with the consensus 
pathway (for example, Fcer2a=Irf4 ⊕ stat6 i.e. target gene 
Fcer2a is affected by the adding of Irf4 and stat6).  However, 
this was less so for gene activities in viral infection with in-
terferon treatment and interferon treatment without infection.  
Table 3 shows the proportions of which gene activities fit the 
known biological pathway from samples in 3 biological con-
ditions respectively.  It is clear that their proportions vary 
corresponding to the different biological conditions.  The 
results on the analysis of macrophage gene expression data 
under three different biological conditions show that inter-
feron treatment establishes the cognate pathway connections 
while infection leads to a limited engagement of the regula-
tory network.  It revealed that there is a ‘phase-changing’ 
phenomenon on the regulator activities caused by underlying 
mechanisms or external inputs.  To capture such phenomenon, 
we define a dynamic model which extends the PBN concept 
to allow network selection probability to vary with biological 
conditions. 
 

 
 

Fig.3. Normalized log-ratios (in log2(test/control)) of gene (Il12b) 
under 3 biological conditions. 

 
Target genes and  logic predic-
tor functions 

% of gene activities fitting 
known biological pathway  

 INFg C3X_INFg C3X 

Fcer2a (Fcer2a=Irf4 ⊕ stat6) 84% 80% 52% 

Itgam  (Itgam=Irf8) 88% 52% 36% 
Il12b    (Il12b=(Irf8 ∩ Irf1) ∪ Irf2) 84% 64% 52% 
G1p2   (G1p2=(Irf8 ∩ Sfpi-
1 ∩ Irf4 ∩ Irf2) ∪Irf1) 

76% 68% 16% 

Cybb 
(Cybb=Irf8 ∩ Sfpi1 ∩ Irf1 ∩ Crebbp) 

92% 84% 64% 

 
Table 3. The proportions of gene activities fitting the known bio-

logical pathway from samples in 3 biological conditions 

The proposed model consists of a number of PBNs and the 
system behaviour switches between these on a stochastic 
basis.  The PBNs inferred from the data in 3 different bio-
logical conditions have the same structure but different pa-
rameters (the function selecting probability). 
 
3.2     Model Identification 
 
Next we present an approach based on reverse engineering 
for the inference of this model from the data.  To simulate the 
real condition, a small number of synthetic data from the 
supposed model under 3 biological conditions will be used 
for the model identification.  The number of target genes is 
set as 7.  In the experiment, because of the limited amount of 
data, the predictor functions are constrained to fall into the 
class of functions known as Canalizing functions [4]. The 
maximum network connection is defined as k=3.  By analyz-
ing the data and employing logic reduction techniques from 
digital electronics the predictor functions and the predictor 
genes for each target gene may be recovered.  After that, we 
select as the predictors, the k genes which best correlate with 
the data for each of the 3 biological conditions. In some cases, 
several genes fit equally well.  Table 4 shows the dominant 
predictor genes inferred from the data in the 3 biological 
conditions respectively.  The numbers of the entry in the ta-
ble represent the indices of the genes. 

After that, the selection probabilities of predictor func-
tions ajm

(i)  (i is the index of target gene, j is the index of the 
predictor function, m is the index of the biological condition) 
in the 3 biological conditions will be determined.  Because of 
the limited amount of data available, a method based on the 
Coefficient of Determination (COD) [6] is used.  The coeffi-
cient measures the degree to which the transcriptional levels 
of an observed gene set can be used to improve the prediction 
of the transcriptional state of a target gene relative to the best 
possible prediction in the absence of observations. 
 

The index 
of genes 

Predictor genes of the constituent 
predictor functions 

 Biological 
Condition1 

Biological 
Condition2 

Biological 
Condition3 

g1   1,6,7 1,3,5 3,5,7 

g2   1,3,6 2,3,5 1,2,5 
1,2,7 
1,2,5 

g3   

1,2,3 

2,3,7 2,3,7 

4,6,7 
4,5,7 
3,4,7 
2,4,7 

g4 1,4,5 

1,4,7 

1,4,5 

g5  4,5,6 3,4,5 1,5,6 
4,6,7 2,5,6 
1,3,7 

g6   

1,2,7 

1,6,7 
1,3,6 

4,6,7 g7  
3,6,7 

1,4,6 3,4,7 

 
Table 4. The predictor genes inferred from samples in 3 biological 

conditions.  
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Define gi as the target gene, the predictor genes come 
from a set of genes g1, g2, … gn .  For gi , the COD of a se-
lected predictor gene set gj

(i)
  is given as 

i
jθ = iopti εεε )( −                               (1) 

where iε  is denoted as the error of best estimation for gi.  

optε  is the optimal minimum error.  From the training data in 

all 3 biological conditions, dj
(i), which is the selection prob-

ability of a certain predictor function fj(i) to target gene gi can 
be inferred from COD values with the range of 0 to 1 by the 
following expression [3]     dj

(i) = �
=

)(

1

iN

k

i
k

i
j θθ                            (2) 

where N (i)  is the number of possible  predictor functions for 
target gene gi .  Similarly, ajm

(i), the selection probability of 
the predictor function  under a certain biological condition 
can be inferred from  the data.  We define cm

(i) as the context 
selection probability for the function sets in the 3 biological 
conditions.  dj

(i) can be represented as 
d j

(i)  = �
=

M

m 1

cm
(i)

 ×ajm
(i)    and �

=

M

m 1

cm
(i) = 1                

where M is the number of the biological conditions (M=3 in 
our experiment).  Therefore, cm

(i) can be obtained from equa-
tion (3). We define mean square error (MSE) ∆ wm

(i) as the 
cost function of  

∆ wm
(i) = E [ (dj

(i) - d’j
(i))2 ]                                 (4) 

where d’j
(i)  is the value of equation (3) given a series of cm

(i).  
Once ∆ wm

(i) displays the minimum value, the optimal reali-
zation of cm

(i) will have been found. 
 
3.3    Experiment Results 
   

 
 

Fig.4.  An example of the selected predictor functions under 3 bio-
logical conditions for g2  

 

 
 

Fig. 5.  An example of ajm
(i), the selection probability of predictor 

functions under 3 biological conditions for g5 . 

Figure 4 shows the constituent predictor functions which are 
in the class of canalizing functions for the target gene g2.  
Figure 5 shows the selection probabilities of 3 predictor func-
tions for the target gene g5.  The probabilities display quite 
different values for the different biological conditions.  In this 
model, the structure of the constituent Boolean networks 
remains stable, whereas the network selection probabilities 
change in response to the different biological conditions.  It 
implies a fixed finite discrete state space but different sta-
tionary distributions.  This model keeps the rule-based struc-
ture while allowing for uncertainty.  It is suitable for the in-
ference of the gene regulatory network from gene expression 
data in different biological conditions. 

4. CONCLUSION 

In this paper, a method of fitting multiple Boolean Networks 
to time course gene expression profiles has been successfully 
applied.  The parameters of the models used to generate the 
data have been accurately recovered despite the fact that only 
a small percentage of all possible transitions have been ob-
served from simulated data.  We also proposed a novel ap-
proach to model the gene regulator activities under different 
biological conditions.  A method identifying the model pa-
rameters from time course gene expression profiles has been 
successfully applied.  All these results are applied in the con-
text of pathway biology to the analysis of an interferon gene 
interaction network.     
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