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ABSTRACT
As a time-frequency tool, the Continuous Wavelet Transform
(CWT) was applied in radar imaging to reveal that the
reflectors’ response varies as a function of frequency f and
aspect angleθ (orientation of the wave vector). To do so, we
constructed a hyperimage expressed as the squared modulus
of the wavelet coefficients, allowing to access to the energy
distribution of each reflector, in the f−θ plane.

Exploiting the hyperimage, our recent researches were
devoted to the classification of the reflectors in function of
theirs energy distributions with the objective of discriminat-
ing a type of target in the radar image. Althought acceptable
results were obtained, the method is not reliable in some
cases.

The purpose of this paper is to show that exploiting not
only the modulus but also the argument of the wavelet coeffi-
cients, can improve the detection of a certain class of reflec-
tors. Results are presented at the end of this article.

Keywords : Time-Frequency Analysis, Continuous Wavelet
Transform, Nonstationary Signal, Radar Imaging, Detection,
Source Classification, Target Extraction.

1. PRINCIPLE OF SAR IMAGING

The SAR (Synthetic Aperture Radar) imaging process
consists in the formation of high resolution images. To do
so, a moving radar emits pulses and collects the elementary
signals reflected by scatterers. Once the overall SAR signal
is stored, the high-resolution image is obtained by Fourier-
based techniques [1, 2, 3]. The SAR images analysed in this
paper are formed with the radar RAMSES [4] at the ONERA.

As shown in figure 1, the imaging plane is labelised us-
ing anx−y Cartesian coordinate system with origin at a ref-
erence pointO. We assume that the radar moves in a straight
line and in a direction parallel to the cross-range direction.
The radar position is described by the azimuth angleθ de-
fined counter clockwise from the y direction. Moreover, we
suppose far zone backscatter, and therefore we obtain plane-
wave incidence on objects. In addition, we assume high-
frequency radar measurements and consequently the scatter-
ing response of a man-made target is well approximated as

a sum of responses from individual scatterers. If the radar
measurements are carried out over a broad bandwidth and a
wide angular window of observation, we have to consider a
model that takes the scattering phenomenology into account.
For a given polarisation, this scattering model is expressed as
a summation of point scatterers multiplied by their respective
frequency and aspect dependent complex amplitudeσi( f ,θ):

H(~k) =
i=N

∑
i=1

σi( f ,θ) exp(− j2π~k ·~r i) (1)

where~k is the wave vector in the direction of the scattered
field:

~k =

(

kx

ky

)

=

(

k cos(θ)

k sin(θ)

)

where k = 2 f/c is the wave number withf the fre-
quency andc the speed of light,θ corresponds to the
observation aspect (see figure 1). The position vector
is ~r = (x,y)T wherex and y represent the slant-range and
cross-range locations.

Referring to the Geometrical Theory of Diffraction
(GTD) [5, 6], the aspect and frequency dependent re-
sponse|σi( f ,θ)| = Ai( f ,θ) is a 2D-function determined
by the geometry, composition and orientation of the
scattering mechanism. Indeed, the GTD predicts that
the responseAi( f ,θ) depends also on a set of parame-
ters{γi ,Li ,θi} describing the shape, the length and the ori-
entation of the scatterer, respectively. We can also suppose
that the argument ofσi( f ,θ) depends on frequency and as-
pect θ: arg[σi( f ,θ)] = φi( f ,θ). A scatterer is saidcol-
ored andanisotropicif its response|σi | depends on the fre-
quency f and the aspectθ, respectively. To highlight the
coloration and the anisotropy of the scatterers, we suggested
the use of a method based on the Continuous Wavelet Trans-
form (CWT) that is a particular tool of the time-frequency
analysis.

2. CONSTRUCTION OF HYPERIMAGES USING
THE CWT

To access to the energy distribution of the scatterers, in
the f − θ plane, we constructed the concept of hyperim-
age which expresses as the squared modulus of the wavelet
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Figure 1: Illustration of a scatterer irradiated at two differ-
ent aspect angles (i.e. two different positions of the moving
radar) in SAR imaging.

coefficients divided by the admissibility wavelet coeffi-
cientAφ [7, 8]:

IH(~ro,~ko) =
1

Aφ

∣

∣

∣
WH(~ro,~ko)

∣

∣

∣

2
(2)

By notingφ the mother wavelet localised around(k,θ) =
(1,0), the admissibility coefficientAφ is defined as:

Aφ =

∫

|φ(~k)|2

k2 d~k < ∞. (3)

The wavelet coefficientsWH(~ro,~ko) are introduced as the
scalar product between the backscattering signalH and each
waveletΨ~ro,~ko

:

WH(~ro,~ko) =

∫

H(~k)Ψ∗
~ro,~ko

(~k)d~k

where the family of waveletsΨ
~ro,~ko

(~k) are generated

from the mother waveletφ(~k) by rotation Rθo, transla-
tion~ro and contraction with the scale factor 1/ko according
to:

Ψ~ro,~ko
(~k) =

1
ko

e−2iπ~k.~roφ
(

1
ko

R
−1
θo

~k

)

=
1
ko

e−2iπ~k.~ro φ
(

k
ko

,θ −θo

)

. (4)

The wavelet coefficientsWH(~ro,~ko) express literally as :

WH(~ro,~ko) =

∫ 2π

0
dθ

∫ +∞

0
k H(k,θ)

1
ko

ej2π~k.~ro φ∗

(

k
ko

,θ −θo

)

dk

(5)

2.1 Interpretation of the hyperimage I(~r,~k)

Let us rewriteI(~r,~k) ≡ I(x,y; f ,θ). For each reflector lo-
cated at ~ro = (xo,yo), we can extract its energy distribu-
tion I(xo,yo; f ,θ), in the f − θ plane. Examples of en-
ergy distribution corresponding to real target reflectors can
be found in [9, 10, 11].

3. IMPROVING THE DETECTION OF A
REFLECTOR CLASS BY EXPLOITING THE FULL

INFORMATION OF WAVELET COEFFICIENTS

The basic idea we proposed is to select among all the scatter-
ers’ energy distributions, one energy distribution susceptible
to be characteristic of the type of object to be discriminated
: this distribution becomes a reference one. Then, the pur-
pose is to identify the scatterers in the image that have similar
distributions to the reference one. We callobjecta structure
with a unique and simple geometry (edge, cylinder, flat plate,
...). The algorithm has consisted in selecting a pixel located
at (xre f ,yre f) in the SAR image, with the help of a visual
interface called i4d (see figure 2), and correlating its corre-
sponding distributionI(xre f ,yre f ; f ,θ) ≡ Ire f( f ,θ) with the
distributionsI(xi ,y j ; f ,θ) ≡ Ii, j( f ,θ) corresponding to the
others pixelsPi, j located at(xi ,y j) in the SAR image, respec-
tively :

Cre f (xi ,y j) =

∫

Ire f( f ,θ) Ii, j( f ,θ) d f dθ
√

Ere f
√

Ei, j
(6)

whereEi, j andEre f are normalised terms, defined as :

Ei, j =

∫

∣

∣I(xi ,y j ; f ,θ)
∣

∣

2
d f dθ.

Ere f =
∫

∣

∣I(xre f ,yre f ; f ,θ)
∣

∣

2
d f dθ.

The figure 2 describes the use of a visual interface
called i4d, for selecting a pixel located at(xo,yo) in the
plane(x,y) , with sliders (see the above plot) and visualizing
the corresponding wavelet coefficientW(xo,yo; f ,θ) in
modulus (see the below left plot) and in phase (see the below
right plot). The initial SAR imageI(x,y) is displayed inside
the x-y plane, in order that the user be sure that the pixel he
selects, corresponds to a reflector belonging to the object to
be discriminated.

In some SAR images that we analysed, this algorithm
proved its efficiency to discriminate a type of object
[11, 12, 13]. Unfortunately, the above method is not
reliable in some cases. Recalling that the energy distribu-
tion I(x,y; f ,θ) expresses from the squared modulus of the
wavelet coefficients, the present work consists in exploiting
not only the modulus but also the phase of the wavelet
coefficients, which is also susceptible to characterise the
reflectors. The full exploitation of wavelet coefficients was
carried out within the framework of Polarimetry and Inter-
ferometry with good results in terms of target classification
and target height estimation [14].
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Figure 2: Presentation of the visual interface i4d : visual-
isation of the wavelet coefficientW(xo,yo; f ,θ) (in modu-
lus and in phase), corresponding to the selected pixel located
at (xo,yo).

Consequently, in order to improve the object extraction,
the function in equation (6) is replaced by :

C′
re f(xi ,y j) =

∫

Wre f ( f ,θ) W∗
i, j( f ,θ) d f dθ

√

E′
re f

√

E′
i, j

(7)

whereE′
i, j andE′

re f are defined as :

E′
i, j =

∫

∣

∣W(xi ,y j ; f ,θ)
∣

∣

2
d f dθ.

E′
re f =

∫

∣

∣W(xre f ,yre f ; f ,θ)
∣

∣

2
d f dθ.

4. RESULTS

The analysed SAR image is composed of a warehouse : lat-
eral buildings are attached to a big one on both sides (see
figures 3 (a) and 3 (b)). In the figure 3 (c), we select some
pixels Po located at(xo,yo) on the lateral buildings (as de-
scribed in the figure 2) and we illustrate the corresponding
wavelet coefficientsW(xo,yo; f ,θ) (represented in modulus
and phase), in thef − θ plane : we can observe that these
wavelet coefficients present some similarities especiallyin
phase.

Here, our objective is to show that making correlation
between the wavelet coefficients (see equation (7)) and a ref-
erence one, can be more efficient than correlating only the
modulus of them with a reference one (see equation (6)) in
terms of object extraction. In order to extract the lateral
buildings, we select a pixel located on one lateral building
and consider its corresponding wavelet coefficient as the ref-
erence one. The figure 4 (a) shows the location of the refer-
ence pixelPre f located at(xre f ,yre f ) and illustrates the corre-
sponding wavelet coefficientW(xre f ,yre f ; f ,θ) (represented
in modulus and phase). The figures 4 (b) and 4 (c) illustrate
the correlation map corresponding to the reference pixel and

(a) Aerial photography (b) Initial SAR image
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(c) Wavelet coefficients (represented in modulus and phase)
corresponding to some pixels located on the lateral buildings.

Figure 3: We reveal that the wavelet coefficients correspond-
ing to the analysed pixels present some similarities (espe-
cially in phase).

resulting from equation (6) and equation (7), respectively. To
visualize the sources detected, in 1D, we can propose to plot
different cross-sections of the correlation maps, along the y-
axis. But, in order that the 1D visualization be representative
of the correlation maps in figures 4 (b) and 4 (c), we have pro-
posed to average the cross-sections along the x-axis, within
a neighbourhoodNxo around the range positionxo :

C
(xo)

re f (y) = ∑
xi∈Nxo

Cre f (xi ,y) (8)

C
′ (xo)

re f (y) = ∑
xi∈Nxo

C′
re f (xi ,y) (9)

where Nxo = {xi / xi ∈ [xo − δ,xo + δ]}. The plots

of C
(xo)

re f (y) (blue color) andC
′ (xo)

re f (y) (red color) are dis-
played in the figures 5 (a), 5 (b) and 5 (c) forxo = −9.6 m,
xo = 0.9 m andxo = 4.1 m, respectively.

We can notice that the the lateral buildings are extracted
better in the figure 4 (c) than in the figure 4 (b). Precisely,
two kinds of improvement are obtained with the exploitation
of the full information of wavelet coefficients : first, more
reflectors composing the lateral buildings are detected, es-
pecially those ones localised on the left-hand buildings (see
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figures 4 (b), 4 (c)) and figures 5 (a) to (c); secondly, the
localization of the reflectors detected, is more accurate (see
figures 5 (a) to (c)).
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Figure 4: Improvement of the lateral buildings extraction by
correlating the wavelet coefficients withWre f .

5. CONCLUSION AND PERSPECTIVES

By considering not only the modulus but also the argument
of the wavelet coefficients, we obtain a better characterisa-
tion of each reflector. By analysing some reflectors localised
on the lateral buildings, we observe that the corresponding
wavelet coefficients present some similarities especiallyin
phase. These observations lead us to correlate the wavelet
coefficients for improving the detection of the reflectors
belonging to the lateral buildings. Comparing with the
method exploiting only the squared modulus of the wavelets
coefficients, we notice that the extraction of the lateral
buildings is improved. Moreover, the method proposed in
this paper seems to be robust to noise : thorough studies
in simulation have to be made to confirm the robustness to
noise.
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(a) 1D visualisation aroundxo = −9.6 m : seven sources
are detected with the method involving the wavelet coef-
ficients.
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(b) 1D visualisation aroundxo = 0.9 m : at least,
six sources are detected with the method involving the
wavelet coefficients.
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(c) 1D visualisation aroundxo = 4.1 m : at least,
five sources are detected with the method involving the
wavelet coefficients.

Figure 5: Cross-sections of the correlation map and compar-
ison of the methods involving the squared modulus and the
full information of wavelet coefficients, respectively.
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As perspectives, we can propose to apply this new
method to other SAR images in order to see if the tar-
gets composing these images can be successfully extracted.
Again, a comparison with the method involving the squared
modulus of the wavelet coefficients must be envisaged. The
reference wavelet coefficient can be obtained leaning on a
priori information concerning the object to be extracted; for
example, the theory of diffraction provides frequency and
aspect dependent responses of canonical objects (flat plate,
cylinder, edge, ...). In addition, the method can be easily
applied to others 1-D nonstationary physical signals (radar,
sonar, seismic, acoustic, sound, ... ) with the aim of classify-
ing the different sources. Finally, separation source methods
could be applied to SAR signals and compared with the pre-
vious wavelet based-algorithm in terms of target extraction.
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