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ABSTRACT

Multifractal analysis, which mostly consists of estimating scaling

exponents related to the power law behaviors of the moments of

wavelet coefficients, is becoming a popular tool for empirical data

analysis. However, little is known about the statistical performance

of such procedures. Notably, despite their being of major practical

importance, no confidence intervals are available. Here, we choose

to replace wavelet coefficients with wavelet Leaders and to use a

log-cumulant based multifractal analysis. We investigate the poten-

tial use of bootstrap to derive confidence intervals for wavelet Lead-

ers log-cumulant multifractal estimation procedures. From numeri-

cal simulations involving well-known and well-controlled synthetic

multifractal processes, we obtain two results of major importance

for practical multifractal analysis : we demonstrate that the use of

Leaders instead of wavelet coefficients brings significant improve-

ments in log-cumulant based multifractal estimation, we show that

accurate bootstrap designed confidence intervals can be obtained for

a single finite length time series.

1. MOTIVATION

Scaling or Multifractal analysis [1, 2, 3] is becoming a standard

analysis procedure commonly available in empirical data analysis

toolboxes. Scaling, or scale invariance, is indeed a property that

has been extensively observed in empirical data produced from nu-

merous applications of very different nature. Multifractal analy-

sis mostly consists of measuring scaling exponents, whose values

are then commonly involved in various detection, identification or

classification tasks. Despite becoming increasingly popular in data

analysis, multifractal estimation procedures remain poorly studied.

Questions, that may appear natural or simple, such as should one

prefer increments or wavelet coefficients?, should one perform wei-

ghted or non weighted regressions? or what are the typical sizes

of the confidence intervals? still remain insufficiently addressed.

However, for practical uses and purposes, elements of answers to

such issues are crucial. Indeed, in many real life applications, the

sizes of confidence intervals are as important as the values of the

scaling exponents themselves, as no classification, discrimination

or hypothesis testing are possible without them.

In the present contribution, we elaborate on multifractal analysis

in combining together three key improvements: wavelet Leaders,

log-cumulants and bootstrap.

First, it is now considered as classical and powerful to chose wavelet

coefficients as the key multiresolution quantities multifractal analy-

sis should be based on [2, 3]. Very recent findings reported in [4, 5]

indicate that an accurate multifractal analysis should be based on

wavelet Leaders rather than on wavelet coefficients. Indeed, the

former enable to estimate exactly the entire multifractal spectrum

and to analyze accurately processes containing oscillating singular-

ities when the later do not. For further details, the reader is referred

to [4, 5]. Wavelet Leaders are defined in Section 4.

Second, multifractal estimation procedures are commonly based on

structure functions (i.e., power law behaviors of the moments of

multiresolution quantities) as in Eqs. (1) or (2) below. However, it

has been proposed to use instead the cumulants of the logarithm of

the multiresolution quantities. This was originally introduced in the

early nineties in [6] and largely developed in [7]. We follow here

these promising developments. Cumulant based estimation proce-

dures are described in Section 2.

Third, we investigate on potential benefits resulting from the use

of non parametric bootstrap for multifractal estimation. In boot-

strapping, the distribution of an estimator is approximated through

repeated resampling with replacement from the available data. The

technique was introduced in the eighties [8] and has recently re-

gained interest due to continuously growing computer facilities [9,

10, 11]. Bootstrapping has been used in the wavelet domain after the

pioneering work reported in [12]. It has also been considered for the

estimation of the Hurst parameter of self-similar processes [13, 14].

In the present work, we intend to explore the use of bootstrap in two

respects: estimation procedure enhancement and confidence inter-

vals derivation. Bootstrap procedures are detailed in Section 3.

Therefore, the aims of the present article are to contribute to the an-

swers of the two following questions: Does the use of (log-cumulant)

wavelet Leaders improve multifractal estimation procedures ? Can

bootstrap provide us with reliable confidence intervals ? To address

these questions, we first compare the statistical performance of es-

timation procedures based on wavelet coefficients and on wavelet

Leaders. Second, we use a coverage procedure to compare confi-

dence intervals obtained from a simple bootstrap approach. Results

are derived by applying our procedures to a large number of re-

alizations of synthetic scaling processes with a priori known and

controlled multifractal properties (cf. Section 5). In Section 6, we

show that the use of wavelet Leaders instead of wavelet coefficients

brings substantial improvements in multifractal estimation perfor-

mance. We also clearly demonstrate that the use of bootstrap proce-

dures enables us to obtain highly reliable confidence intervals. We

end up with a practical procedure that provides us with both ac-

curate multifractal estimates and confidence intervals and that can

actually be used for analyzing a single run of empirical data with

finite observation duration.

2. MULTIFRACTAL, CUMULANTS AND WAVELETS

2.1. Definitions

Wavelet Coefficients. Let X(t), t ∈ [0, n) denote the process

under analysis and n its observation duration. ψ0(t) is a refer-

ence pattern with fast exponential decay, called the mother-wavelet.

It is characterized by its number of vanishing moments, a strictly

positive integer Nψ ≥ 1 defined as: ∀k = 0, 1, . . . , Nψ − 1,�
R
tkψ0(t)dt ≡ 0 and

�
R
tNψψ0(t)dt 6= 0. Let us further de-

note by {ψj,k(t) = 2−jψ0(2
−jt − k), j ∈ Z, k ∈ Z} templates

of ψ0 dilated to scales 2j , and translated to time positions 2jk. The
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wavelet coefficients of X are defined as dX(j, k) = 〈ψj,k|X〉.
Scaling and Multifractal. A process X is said to possess scale

invariance or scaling properties if, for some statistical orders q ∈
[q−∗ , q

+
∗ ] (cf. [15]), the time averages of |dX(j, k)|q taken at fixed

scales display power law behaviors with respect to scales a = 2j ,

〈|dX(j, ·)|q〉 = Fq|a|ζ(q), (1)

over a wide range of scales a ∈ [am, aM ], aM/am � 1. The ζ(q)
are referred to as the scaling exponents of X and are closely related

to its multifractal spectrum [5].

When ζ(q) is linear in q, i.e. ζ(q) = qH , the process X is said

to be monofractal. This is, for instance, the case for finite variance

self similar processes such as fractional Brownian motion. When

ζ(q) 6= qH , X is said to be multifractal. This is clearly only a

poor and operational definition of multifractality. However, for the

purposes of this article it is sufficient. We refer the reader to, e.g.,

[1], for a thorough introduction to multifractal analysis.

Cumulants. [6, 7] For some processes, Eq. (1) is equivalent to

E|dX(j, ·)|q = Fq|2j |ζ(q). (2)

Using a second characteristic function type expansion, one can re-

write Eq. (2) as :

ln Eeq ln |dX (j,·)| =
∞�
p=1

Cjp
qp

p!
= lnFq + ζ(q) ln 2j , (3)

where Cjp stand for the cumulant of order p ≥ 1 of the random

variable ln |dX(j, ·)|. Combining Eqs (2) and (3) yields that the

cumulants of ln |dX(j, ·)| have to be of the form:

∀p ≥ 1 : Cjp = c0p + cp ln 2j (4)

and therefore that

ln Eeq ln |dX (j,·)| =

∞�
p=1

c0p
qp

p!� �� �
lnFq

+

∞�
p=1

cp
qp

p!� �� �
ζ(q)

ln 2j , (5)

where c0p and cp do not depend on the scale 2j .
Thus, the measurements of the scaling exponents ζ(q) can be

interestingly replaced by those of the log-cumulants cp. This is

mainly motivated by the fact that it emphasizes the difference be-

tween monofractal (∀p ≥ 2 : cp ≡ 0) and multifractal processes

[6, 7]. The next section describes estimation procedures for the cps.

2.2. Estimation Procedures

Commonly, the scaling exponents ζ(q) are estimated by linear fits

performed in log2〈|dX(j, ·)|q〉 vs. log2 |2j | plots (see e.g., [2]). In

the present work, we explore the alternative estimation of the equiv-

alent quantities cp.

Cumulant estimations. Given nj coefficients d(j, k) and thus

samples Yj(k) = ln |dX(j, k)|, the asymptotically unbiased and

consistent standard estimators (see e.g., [16]) are employed to ob-

tain estimates Ĉjp for the cumulants of ln |dX(j, ·)|.
Linear regressions. From these Ĉjps, the cp can then be esti-

mated by linear regression (cf. equation (4)),

ĉp = log2 e

j2�
j=j1

wjĈ
j
p. (6)

Theoretical performance. Since the Ĉjps are asymptotically

unbiased and consistent, the ĉps are asymptotically unbiased. As

detailed in, e.g., [2], the dX(j, k) of scaling processes are weakly

correlated. Hence, one can approximate the variance of ĉp as:

Var ĉp ' (log2 e)
2 �j2

j=j1
w2
jVar Ĉjp . Thus, the ĉps are as well con-

sistent.

Weights. The weightswj have to satisfy the constraints�j2
j1
jwj

≡ 1 and �j2
j1
wj ≡ 0 and can be expressed as wj = 1

bj

S0j−S1

S0S2−S
2

1

,

with Si = �j2
j1
ji/bj , i = 0, 1, 2. The positive numbers bj are

freely selectable and reflect the confidence granted to each Ĉjp . We

have chosen to compare three cases, corresponding respectively to

i) non-weighted regression, ii) the dX(j, k) can be idealized to in-

dependent random variables (cf. [2]), and iii) the confidence level

is set proportional to the inverse of the estimated variances σ̂2
p(j) of

Ĉjp (in the present case, these variances will be estimated by boot-

strap):

w0,j : bj = 1. (non-weighted regression)

w1,j : bj = 1/nj (assuming Ĉjmp , Ĉjnp uncorrelated)

w2,j : bj = σ̂p(j)
2 (σ̂p(j)

2: estimate of variance of κ̂p,(Ya)).

3. BOOTSTRAP

We use bootstrap generated nonparametric empirical distributions

(see e.g. [8, 9, 10, 11]) for first estimating the variance σ̂2
p(j) of

Ĉjp , and second for constructing confidence intervals for ĉp. As

the wavelet coefficients of scaling processes at a given scale are

weakly correlated, we adopt a moving blocks bootstrap with over-

lapping blocks of length L. At each scale a = 2j , the R boot-

strap resamples D∗(1)
j , · · · ,D∗(R)

j are generated from the original

sample Dj = {dX(j, 1), · · · , dX(j, nj)}. Each resample D∗
j =�

d
∗(j,1)
X (·), · · · , d∗(j,nj)X (·)� represents an unsorted collection of

nj sample points, drawn blockwise and with replacement from the

original sample. These collections D∗(r)
j are used to compute R

bootstrap cumulant estimates r = 1, . . . , R, Ĉ
j ∗(r)
p . In turns, these

C
j ∗(r)
p are used for obtaining i) variance estimates for Ĉjp , and ii)

R bootstrap ĉp:

σ̂2
p(j) =

1

R

R�
r=1

Cj ∗(r)p , (7)

ĉ∗(r)p = log2 e

j2�
j1

wjĈ
j ∗(r)
p . (8)

The σ̂2
p(j) are involved in the calculation of the weights w2,j . The

ĉ
∗(r)
p are used to construct 100(1−α)% confidence intervals for the

ĉps, according to:

CIp = 	Qp 	α
2 
 , Qp 	1 − α

2 

 = 	̂c∗(r1)
p , ĉ∗(r2)

p 
 (9)

Here Qp(α) is the α-th empirical quantile of the empirical distribu-

tion of theR estimates of ĉp, i.e., r1 = bRα
2
c and r2 = R−r1 +1.

Alternatively to this simple bootstrap procedure, the use of pivotal

statistics or variance stabilizing transformations can be considered

(see e.g., [9]). This is currently being investigated.

4. WAVELET LEADERS

As indicated in Section 1, Wavelet Leaders consists of multires-

olution quantities that present significant theoretical and practical

qualities to perform Multifractal analysis. Notably, they enable the

use of positive and negative q in Eq. 1 as well as a relevant analysis

of chirp-type oscillating singularities and hence the correct analy-

sis of the entire spectrum of multifractal properties of X . This has
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recently been proven in [4, 5]. Therefore, in the estimation proce-

dures described in Section 2, wavelet Leaders are used instead of

wavelet coefficients.

Let us introduce the indexing λj,k = [k2j , (k+1)2j) and the union

3λj,k = λj,k−1 ∪λj,k ∪λj,k+1. The wavelet Leaders LX(j, k) are

defined as

LX(j, k) = sup
λ′⊂3λj,k

|dλ′ |, (10)

where the supremum is taken on the discrete wavelet coefficients

dX(·, ·) in the time neighborhood 3λj,k over all finer scales 2j
′

<
2j . All relations in Subsection 2.1, in particular Eqs. (1-5) can

be rewritten replacing the dX(j, k) by the LX(j, k). Thus, the

estimation procedures detailed in Subsection 2.2 and in Section 3

can be rewritten, mutatis mutandis. For convenience, we introduce

the superscript d and L to distinguish between estimates involv-

ing wavelet coefficients and Leaders, i.e., Ĉj, dp , ĉdp, CIdp involve the

dX(j, k) while Ĉj, Lp , ĉLp , CILp involve the LX(j, k).

5. NUMERICAL SIMULATIONS

Monte Carlo Simulation. We evaluate the performance of the

proposed estimation procedures by applying them to a large number

NMC of realizations of synthetic stochastic multifractal processes

with known and controlled multifractal properties.

From averages 〈·〉 over Monte Carlo realizations, we compute the

standard deviations ŝp = �〈ĉ2p(i)〉 − 〈ĉp(i)〉2, the biases β̂p =

〈cp(i) − ĉp(i)〉 and mean-square errors MSEp = �ŝ2p + β̂2
p of the

proposed estimators.

To evaluate the reliability of the confidence intervals obtained from

bootstrap, we investigate the coverages produced by re-centered

confidence intervals,

CIp,R(i) = CIp(i) − β̂p, i = 1, · · · , NMC

i.e., confidence intervals that are corrected by the Monte Carlo es-

timates of the bias of the estimators. This allows us to determine

the quality of the confidence intervals independently of the influ-

ence of a possible bias of the estimators. The empirical coverages

of re-centered confidence intervals are then calculated as:

Cemp
p = 〈ε (cp,CIp,R(i))〉 .

Here, ε (cp,CIp,R(i)) = 1 if cp ∈ CIp,R(i) and 0 otherwise: i.e.,

the empirical coverages Cemp
p equals the percentage of MC realiza-

tions for which the true cp fall within the corresponding re-centered

confidence intervals.

Scaling Processes. We use two well known scaling processes,

Fractional Brownian motion (FBM) and Multifractal random walk

(MRW), chosen because they provide us with simple yet representa-

tive examples of Gaussian monofractal processes and non Gaussian

multifractal processes respectively. FBM is defined as the only

Gaussian exactly self-similar process with stationary increments.

Its full definition as well as that of self-similarity can be found

in e.g., [17]. The statistical properties of FBM are entirely deter-

mined by the parameter H . FBM possesses scaling properties as

in Eq. (2), with ζ(q) = qH , for q ∈ (−1,∞). Thus, c1 = H
and cp ≡ 0 for all p ≥ 2. MRW has been introduced in [18]

as a simple multifractal (hence non Gaussian) process with station-

ary increments: X(k) = �n

k=1GH(k)eω(k), where GH(k) con-

sists of the increments of FBM with parameter H . The process

ω is independent of GH , Gaussian, with non trivial covariance:

cov(ω(k1), ω(k2)) = λ ln 	 L
|k1−k2|+1
 when |k1 − k2| < L

and 0 otherwise. MRW has interesting scaling properties as in

Eqs. (1) or (2) for q ∈ 
−�2/λ,�2/λ� (cf. [15]), with ζ(q) =

(H +λ)q−λ2q2/2, hence c1 = H +λ, c2 = −λ2 and cp ≡ 0 for

all p ≥ 3. One sees that the departure from a linear behavior in q is

fully controlled by λ (or c2).

Simulation Setup. The results presented here are obtained us-

ing Daubechies wavelets with Nψ = 3. Parameters were set to

NMC = 1000, n = 215, R = 200, L = 6, H = c1 = 0.8 for

FBM and (H,λ) = (0.72,
√

0.08), i.e. c1 = 0.8 and c2 = −0.08,

for MRW.

6. RESULTS

6.1. Statistical Performance.

Tables 1 and 2 compare the biases and MSEs (respectively) of ĉdp
and ĉLp for p = 1 − 5, obtained for 1000 realizations of FBM and

MRW.

Bias. Table 1 shows that, while ĉd1 and ĉL1 have comparable bi-

ases, for p ≥ 2, ĉLp systematically exhibits smaller biases. Note that

this discrepancy increases with p and that for p = 5, the difference

counts at least 3 orders of magnitude ! Clearly, ĉdp become useless

in practise for p = 4, 5, whereas ĉLp continue to give estimates of

high accuracy, similar to those produced for p = 1, 2. Also, ĉd1 has

a bias smaller than that of ĉL1 for (monofractal) FBM, but a larger

bias for (multifractal) MRW. Together, these arguments clearly in-

dicate that when the deviations from linearity of ζ(q) are of interest,

Leaders must be preferred to wavelet coefficients. From the weight

choice point of view, biases are equivalent.

Mean Square Error. Standard deviations are an order of mag-

nitude larger than biases, so that they mostly contribute to MSEs.

Hence MSEs only are reported. Table 2 shows that the MSEs of

the ĉLp are systematically much smaller than those of the ĉdp for both

processes, all weights and all orders. Again, this difference grows

with p (roughly as 10p−1), showing that estimates for the cumulant

of order 3 can no longer be obtained from wavelet coefficients and

require the use of Leaders. For the weight choice issue, we note

that the MSEs of ĉLp based on w1,j and w2,j are of comparable or-

der of magnitude in all cases and much smaller than those obtained

with w0,j . Four conclusions can be drawn: i) linear regressions for

the cumulants must be weighted, ii) the independence assumption

of the dX(j, k) underlying the choice w1,j remains valid for Lead-

ers, iii) bootstrap does a good job in estimating the variances of the

Ĉjps, iv) as the choice w2,j involves a much higher computational

cost for results equivalent to those obtained with the choice w1,j ,

this latter is preferred. Fig. 1 displays histograms of ĉdp and ĉLp
for p = 1, 2, 3 (weights w1,j) obtained from 1000 realizations of

MRW. Whereas the empirical distributions of ĉdp and ĉLp have simi-

lar shape and center, those of ĉLp have smaller spread, in particular

for p = 2, 3. Again, this suggests the use of ĉLp rather than ĉdp.

Conclusion. These results lead us to conclude that weighted

wavelet Leader based estimators produce the most accurate esti-

mates for log-cumulants. In particular, highly relevant estimates of

log-cumulants of higher order are obtained. Hence, we recommend

the use of ĉLp with weights w1,j for practical log-cumulant based

multifractal analysis.

Block Bootstrap. From the definition of the Leaders LX(j, k)
in Eq. (10), it is clear that they may display complicated intra- and

inter-scale (i.e., joint time and scale) correlation structures. There-

fore, one may expect poor results for leader-based simple bootstrap

estimates. Our results show that this is not the case. Moreover, in

Fig. 2, histograms for ĉLp , based on 200 realizations of MRW (cf.

below), and for 200 corresponding bootstrap estimates ĉL, ∗p , based

on a single realization, are shown. The closeness of Monte Carlo

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



BIAS FBM MRW

Estimator w0,j w1,j w2,j w0,j w1,j w2,j

ĉd1 0.4 0.8 -3.3 32.8 31.2 28.6

ĉL1 2.2 5.8 6.2 28.3 30.2 28.4

ĉd2 10.7 1.3 48.3 -0.1 -10.6 33.1

ĉL2 1.5 -2.8 0.6 -1.8 -10.0 1.0

ĉd3 -51.3 -3.5 -267.9 -36.7 -6.7 -258.9

ĉL3 0.9 1.2 1.4 2.2 -0.9 2.0

ĉd4 394.9 54.3 1059.6 352.8 86.0 1078.0

ĉL4 0.8 0.6 0.2 5.9 3.2 1.7

ĉd5 -3513.8 -783.3 -3235.6 -3344.8 -1036.9 -3232.7

ĉL5 0.0 -0.2 -0.4 7.8 4.2 3.0

Table 1. Bias (× 103) of estimators ĉp for FBM (left) and MRW

(right) and p = 1 − 5. Best results are marked in bold.

MSE FBM MRW

Estimator w0,j w1,j w2,j w0,j w1,j w2,j

ĉd1 32.8 15.5 16.6 47.0 35.3 34.3

ĉL1 19.8 10.8 12.0 38.1 32.8 32.9

ĉd2 77.6 37.3 65.6 87.8 42.8 60.1

ĉL2 6.5 4.1 4.6 24.1 17.5 20.6

ĉd3 340.0 187.7 302.4 399.8 200.7 300.7

ĉL3 3.1 1.8 1.9 23.4 18.4 19.9

ĉd4 1822.4 1251.2 1125.4 2505.8 1366.4 1164.0

ĉL5 2.0 1.0 0.8 31.0 30.0 25.0

ĉd5 9622.5 9803.0 3621.3 15741.9 11068.3 3673.2

ĉL5 2.6 0.7 0.6 72.9 50.1 52.3

Table 2. MSE (× 103) of estimators ĉp for FBM (left) and MRW

(right) and p = 1 − 5. Best results are marked in bold.

and bootstrap empirical distributions for ĉLp provides us with a clear

indication in favor of a relevant use of leader-based bootstrap esti-

mation procedures, as described in Section 3. Joint time-scale block

bootstrap is however under current investigation.

6.2. Confidence Intervals.

Table 3 summarizes the empirical coverages of the re-centered con-

fidence intervals (9) for the estimators ĉdp and ĉLp of order p = 1−5.

The targeted coverage is 95%.

We observe that the bootstrap based procedure produces satisfactory

confidence intervals in all cases. Moreover, we note that the cover-

ages obtained with the choice w1,j are highly relevant and quasi

systematically the best (or very close to the best). This may be

because it allies relevant weighting without having recourse to esti-

mated quantities. This yields two main conclusions. First, bootstrap

approaches yield highly relevant confidence intervals for multifrac-

tal estimation. Therefore, we highly recommend their use in practi-

cal multifractal analyses. Second, the choice w1,j is to be favored.

Improvements resulting from the use of pivotal statistics (see e.g.,

[9]) are under current investigation.

6.3. Practical procedure and regression range.

From these analyzes, we have designed a MATLAB routine that im-

plement wavelet coefficient and wavelet Leader based log-cumulant

multifractal analysis together with bootstrap based confidence inter-

vals. Therefore, it enables us to obtain from a single observed times
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ĉd
1

−0.2 −0.1 0 0.1
0

50

100

150

200
ĉd
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Fig. 1. Histograms of ĉ1 (left), ĉ2 (center) and ĉ3 (right) for wavelet

coefficients (top) and wavelet Leaders (bottom) for 1000 realiza-

tions of MRW and weights w1,j (note the different scale of the x-

axis for ĉd3 and ĉL3 .

FBM MRW

Estimate w0,j w1,j w2,j w0,j w1,j w2,j

CId1,R 85.7 92.1 89.5 90.1 98.6 95.5

CId2,R 79.4 92.3 75.3 79.1 95.5 79.6

CId3,R 72.3 91.2 66.9 71.2 92.6 72.9

CId4,R 64.3 87.8 85.0 62.2 90.3 86.8

CId5,R 85.7 87.8 76.6 83.8 90.8 82.5

CIL1,R 71.8 83.4 76.6 84.5 98.8 89.0

CIL2,R 76.1 90.3 73.3 75.7 97.0 71.3

CIL3,R 92.6 94.7 94.7 80.4 96.4 75.6

CIL4,R 96.3 97.2 89.7 85.1 95.4 79.2

CIL5,R 96.1 98.0 98.2 85.0 96.6 82.4

Table 3. Empirical coverage of re-centered 95% confidence inter-

val for log-cumulant estimates from wavelet coefficients (top) and

wavelet Leaders (bottom) for FBM and MRW and p = 1 − 5. Re-

sults closest to target coverage are marked in bold.

series with finite length, both estimates for the cps and error bars.

This significantly improves already available practical multifractal

estimation procedures as for most applications error bars are as im-

portant as estimates themselves. We see this as a major result of the

present contribution.

Fig. 3 illustrates this procedure at work and shows logscale dia-

grams (for p = 1, 2, 3): Ĉj, Lp (or Ĉj, dp ) as a function of j for a

single realization of MRW, together with corresponding regression

lines and ±1.96σ̂p(j) error bar estimates obtained from bootstrap.

Whereas all Ĉj, Lp s display a highly linear behaviour over a large

range of scales j, even for large ps, a zone of linearity is more diffi-

cult to find for Ĉj, d2 and Ĉj, d3 , suggesting estimates of poorer qual-

ity in these cases. Clearly, the selection of the regression range of

octaves is a key practical issue that adds an extra complication to

the analyzes reported here. Again, one sees that for Leader based

multifractal, selecting the regression range should be easier.

7. CONCLUSION AND PERSPECTIVES

In the present work, we compared various log-cumulants multifrac-

tal estimation procedures. First, we demonstrated that the use of

wavelet Leaders instead of wavelet coefficients brings substantial

improvement in estimation performance. In particular, highly accu-

rate estimates for log-cumulants of order p ≥ 2 can be obtained.

To the best of our knowledge, this had never been illustrated clearly

before. Second, we showed that the simple bootstrap approach pro-

vides us with highly relevant confidence intervals for the estimates
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Fig. 2. Histograms of ĉLp obtained from 200 realizations of MRW

(top row) and bootstrap resamples ĉL ∗
p obtained from one single

realization chosen at random (bottom row), for p = 1, 2, 3 (from

left to right).
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Fig. 3. Logscale diagram of Ĉj, dp (left) and Ĉj, Lp (right) for a sin-

gle realization of MRW, with weighted regression line with weights

w1,j over scales j1 = 3 to j2 = 10. The error bars ±1.96σ̂p(j) are

estimated by bootstrap.

ĉdp and ĉLp . This is another major improvement as, to the best of our

knowledge, this is the first time that a non parametric confidence in-

terval estimation procedure, with excellent performance, is obtained

for multifractal analysis. Wavelet Leaders and bootstrap confidence

intervals together lead to the design of a multifractal analysis proce-

dure (available in MATLAB upon request) of primary interest for the

exploration of empirical data with possibly multifractal properties.

A key feature of the results obtained in this work lies in the fact that

they hold for both Gaussian monofractal and non Gaussian mul-

tifractal processes. This is very promising as it opens the track

for the design of hypothesis tests aiming at discriminating between

mono- and multi-fractal processes, and between different multi-

fractal processes, two major practical issues. These ideas are cur-

rently under investigation.
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