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ABSTRACT 
A generalisation of the eigenvalue decomposition (EVD) is 
proposed for para-Hermitian polynomial matrices. A novel 
technique for computing this polynomial matrix EVD is out-
lined. It involves applying a sequence of elementary 
paraunitary matrices and is referred to as the second order 
sequential best rotation (SBR2) algorithm. An application of 
the SBR2 algorithm to broadband subspace identification is 
briefly illustrated. 

1. INTRODUCTION 

The eigenvalue decomposition (EVD) is a very important 
tool for narrowband adaptive sensor array processing. It finds 
application in areas as diverse as high resolution direction 
finding, stabilised adaptive beamforming and blind signal 
separation [1,2]. The EVD decorrelates the signals received 
from an array of sensors by applying a unitary matrix of 
complex scalars, which serves to combine the signals with 
modified phase and amplitude. Because the transformation is 
unitary, the associated eigenvalues represent the true energy 
associated with each of the decorrelated components; thus 
the signal and noise subspaces may sometimes be identified 
and separated. 

In broadband applications, or in a situation where nar-
rowband signals have been convolutively mixed, the received 
signals cannot be related in terms of simple phase and ampli-
tude factors so instantaneous decorrelation is no longer suffi-
cient. It is necessary to impose decorrelation, not just at the 
same time instant for all pairs of signals, but over a suitably 
chosen range of relative time delays. This is referred to as 
strong decorrelation, and achieving it requires a matrix of 
suitably chosen finite impulse response (FIR) filters. If each 
filter is represented in terms of its transfer function, this takes 
the form of a polynomial matrix.  

In this paper we generalise the EVD to broadband adap-
tive sensor arrays by requiring the strong decorrelation to be 
implemented using a paraunitary polynomial matrix. A 
paraunitary polynomial matrix represents a multi-channel all-
pass filter and, accordingly, it preserves the total signal 
power at every frequency [3]. We also present a novel tech-
nique for computing the required paraunitary matrix and 
show how the resulting polynomial matrix EVD algorithm 
(SBR2) can be used in practice to identify broadband signal 
and noise subspaces. The algorithm, being highly generic in 
nature, has potential application to a wide range of important 

problems. These include broadband adaptive beamforming, 
broadband blind signal separation [4], multi-channel adaptive 
noise cancellation, the analysis of multiple-input multiple-
output (MIMO) communication channels and the design of 
optimal filter banks for data compression. 

Our approach is quite distinct from other time-domain 
methods reported to date. Lambert [5] has addressed the 
problem of broadband blind signal separation in the context 
of convolutive mixing. He represents the convolutive mixing 
in terms of DFT filter matrices as well as polynomial matri-
ces. He has developed an EVD for polynomial matrices by 
generalising some conventional linear algebra and control 
techniques from the complex number field to the field of 
rational functions. His method involves the approximate in-
version of FIR filters in the frequency domain and is there-
fore quite distinct from the one proposed here.  

Regalia and Huang [6] have addressed the problem of 
computing a two channel lossless FIR filter for optimal data 
compaction. This leads to the determination of an optimum 
paraunitary matrix as required for our polynomial matrix 
EVD algorithm in the  case. Their approach exploits 
the fixed degree parameterisation proposed by Vaidyanathan 
[3], resulting in a difficult nonlinear optimisation. However, 
they re-formulate the problem using a state space approach 
and propose an iterative solution which avoids the problems 
of local minima associated with gradient descent techniques.  
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This paper is organised as follows. Section 2 discusses 
broadband sensor arrays and shows how the convolutive 
mixing of independent signals may be formulated in terms of 
polynomial matrices. The concept of a broadband EVD suit-
able for convolutive mixtures is then introduced. A tractable 
approach to computing the broadband EVD is described in 
section 3 and a specific algorithm is then  outlined. Section 4 
presents the results of some preliminary numerical simula-
tions using the algorithm to perform broadband subspace 
decomposition. Section 5 contains some concluding remarks. 

2. BROADBAND SIGNALS AND CONVOLUTIVE 
MIXING 

The purpose of this paper is to suggest a novel technique for 
extending the EVD to broadband sensor array signal process-
ing. In the case of a broadband sensor array, the signal re-
ceived at each element may be represented as a linear super-
position of delayed samples of the signals emitted by each 
source. In the case of q source signals )1()( qjts j L= and p 



sensor outputs this may be expressed in the 
form 
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In effect, each sensor to signal channel is represented by an 
individual FIR filter , which models the effects of 
multipath propagation and dispersion. This is generally re-
ferred to as convolutive mixing. In (2.1), denotes one 

component of the vector  which represents addi-

tive noise drawn from an i.i.d. process with variance . 
We also adopt the vector notation and  
for the transmitted and received signals and assume that 

, and  have zero mean. Using the familiar 
transfer function notation, (2.1) may be expressed in the 
form 

)(taij

)(tηi
pCt ∈)(η

2σ
qCt ∈)(s pCt ∈)(x

)(ts )(tη )(tx

 )()()()( zzzz ηsAx +=  (2.2) 

where is a pxq polynomial matrix with elements of the 
form 
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and , ,  denote algebraic power series in )(zs )(zη )(zx
1−z exemplifed by  
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It is assumed that the broadband source signals 
 are statistically independent so the 

cross-correlation at all lags must be zero. Hence, assuming 
the statistics are wide-sense stationary, the space-time covari-
ance matrix takes the form 
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where )(τσ i denotes the autocorrelation sequence of the ith 
signal. It follows that the cross-spectral density matrix is 
also diagonal and may be written in the form 
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where )(ziσ denotes the z-transform expansion for )(τσ i . 
As a result of the mixing process in (2.2), the received sig-
nals will generally be correlated and their cross-spectral den-
sity matrix, which takes the form 

 IARAR 2)(~)()()( σ+= zzzz ssxx , (2.3) 

will not generally be diagonal. The tilde operation in (2.3) is 
used to represent paraconjugation, i.e. the combined opera-
tions of matrix transposition, substitution of 1−z  for z , and 
complex conjugation of the polynomial coefficients [3].  

The first stage of many signal processing algorithms is 
to filter and recombine the received signals  in order to 

generate signals , which (to a good approximation) are 
uncorrelated over a range of relative time delays. This may 
be achieved by a number of standard techniques such as 
multi-channel linear prediction using a least squares lattice 
filter [1]. However, since these methods do not conserve the 
spectral power in the signals, they cannot be used to identify 
the signal and noise subspaces. In order to overcome this 
limitation, it would be highly desirable to have a suitable 
broadband EVD algorithm.  
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We propose a broadband EVD algorithm of the form 
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)(ˆ zxxR  is a polynomial covariance matrix which serves to 
estimate  from the available data samples and 

 is the corresponding polynomial matrix for the 
transformed signals. is a polynomial matrix con-
strained to be paraunitary which means that 
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where tilde again denotes the paraconjugate. The polynomial 
matrix is constrained to be paraunitary so that the total power 
of the signals at every frequency is conserved by the trans-
formation [3], i.e. it defines an all-pass filter. This ensures 
that the power in the resulting broadband signal and noise 
subspaces has proper physical significance.  

For the sake of brevity, the explanation of this algorithm 
will be restricted to the special case of two signals (assumed 
to be real) and two sensors. This is sufficient to explain the 
basic concept. The challenge is to compute a paraunitary 
matrix such that the transformed polynomial covari-
ance matrix in (2.4) is as close to diagonal as possible. In 
general, it will not be possible to achieve exact diagonalisa-
tion since the paraunitary matrix is composed of FIR filters. 
However, if the number of delay stages in the filter elements 
of the paraunitary matrix is sufficiently large, the decorrela-
tion can be achieved to a very good approximation. 
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Since a general polynomial matrix is not necessarily 
paraunitary, it is vital to ensure that the approximate diago-
nalisation is carried out over the restricted space of parauni-
tary matrices. The easiest way of generating a paraunitary 
matrix is to use a suitably parameterised representation. 
Vaidyanathan [3] has shown that an arbitrary FIR paraunitary 
matrix can be decomposed into a set of rotations interspersed 
by delays. Apart from a scaling factor and a possible channel 
swap, a two-channel paraunitary matrix  of degree N 
is decomposed as 
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   ⎥
⎦

⎤
⎢
⎣

⎡
= −10

01
)(

z
zΛ

and  represents a 2x2 rotation matrix, which can be pa-
rameterised by a single rotation angle. For the purposes of 
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broadband EVD, the challenge is to identify rotation matri-
ces  that minimise the output cross-correlation 
over multiple time lags. Unfortunately, this is a very difficult 
task since the individual rotations can not be computed in-
dependently and a multi-parameter nonlinear optimisation is 
required. 
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3. SEQUENTIAL BEST ROTATION ALGORITHM 

In order to simplify the problem, we adopt a different for-
mula for generating the paraunitary matrices. This takes the 
form 
  (3.1) 11)( dd
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where the integer parameters  can be negative or positive. 
It can be seen that any polynomial matrix generated by (3.1) 
is paraunitary since each term is paraunitary. Equation (3.1) 
introduces the important new concept of an “elementary 
paraunitary matrix”. This takes the form  and 
comprises a number of delays (possibly negative) applied to 
one channel, followed by a rotation [4]. It is elementary in 
the sense that it only involves one rotation, but it does not 
necessarily have degree one. The second order sequential 
best rotation (SBR2) algorithm seeks to generate a parauni-
tary matrix according to (3.1) by calculating and applying an 
iterative sequence of suitably chosen elementary paraunitary 
matrices. This sequence is designed to minimise the strong 
decorrelation measure 
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where )(1̂2 τr  denotes the estimated correlation between the 
two transformed signals at lag τ , i.e. the off-diagonal ele-
ment of the estimated polynomial covariance matrix for 
lagτ . At the initial stage, this is typically given by 

  (3.2) τ

τ
τ −

−=
∑= zz
W

W
xxxx )(ˆ)(ˆ RR

where 

  . (3.3) ∑ −=
−

=

1

0

H /)()()(ˆ T

t
xx Ttt ττ xxR

It is assumed that  for 0)(ˆ ≅τxxR W>τ . This reflects the 
fact that for broadband signals, the space-time correlation 
function is negligibly small if τ  is large compared to the 
coherence time. In practice, the value of W is often meas-
ured experimentally. It is also assumed that . WT >>

The SBR2 algorithm for two signals may be summarised 
as follows: 
1) Compute an estimate of the space-time covariance matrix 
using, for example, the formula in (3.3).  
2) Apply a relative delay between the two signals so that their 
instantaneous cross-correlation is maximised. This corre-
sponds to the value of τ  for which )(1̂2 τr is greatest. 
3) Rotate the realigned signals through the smallest angle θ  
which satisfies  
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This drives their zero-lag cross-correlation to zero. 
4) Update the polynomial covariance matrix accordingly: 
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where denotes the elementary paraunitary matrix de-
fined by steps 2 and 3. 
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5) Repeat steps 2 to 4 (which constitute one iteration) until 
the strong decorrelation measure g is sufficiently small. 

Each iteration applies a single elementary paraunitary 
matrix, chosen to remove as much cross-correlation as possi-
ble at that stage. At first sight, this might not seem to be a 
sensible strategy since the successive elementary paraunitary 
matrices do not commute and applying a rotation doesn't just 
affect the current state but also the potential future gains of 
the algorithm. Unlike the narrowband case, applying a poorly 
chosen rotation is likely to make the problem more difficult 
by increasing the order of the mixing polynomial for no good 
reason. However, the freedom to choose an optimum delay 
for each stage makes this process much more meaningful.  

In order to explain how the algorithm achieves its objec-
tive, we introduce the following set of measures relating to a 
given pair of  signals  and :  )(1 tx )(2 tx
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3N  is simply the cross-correlation between the two signals at 
zero lag while  constitutes the squared norm of the zero-
lag correlation matrix. It is easy to show that  is invariant 
to a rotation of the two signal channels and obvious that  
is invariant to a delay applied to either channel. As  is 
invariant to a rotation, and constitutes the sum of  and 

, any rotation which leads to a reduction in the value of 
 must increase  by the same amount. Each stage of the 

algorithm is designed to maximise the value of . Now for 
any pair of signals, the value of  can be driven to zero by 
rotating them through an angle 
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θ  which satisfies (3.4). It 

follows that the best delay for increasing  is the one for 
which  is greatest prior to the rotation, i.e. the one which 
maximises the zero-lag correlation between the shifted sig-
nals. Since the value of  is unaffected by subsequently 
delaying either channel, it can be seen that successive steps 
of the SBR2 algorithm must lead to a monotonic increase in 
the value of . It follows fairly directly, that this sequence 
of operations converges to a solution which achieves strong 
decorrelation in the sense that . However, the full 
proof is not included here due to limitations on space. 
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In this paper we have chosen to describe the SBR2 algo-
rithm in terms of elementary paraunitary matrices applied 
directly to the received signals. However, it can also be 
viewed in terms of elementary paraunitary matrices and their 
paraconjugates applied to the polynomial covariance matrix 
as evident from (3.5). The SBR2 algorithm should be re-
garded more fundamentally, as a paraunitary technique for 
diagonalising any para-Hermitian polynomial matrix (one 
that is identical to its paraconjugate).  

Vaidyanathan [7] has shown that a paraunitary matrix 
designed for optimal subband coding must achieve strong 
decorrelation, and also impose spectral majorisation on the 
output signals. It is worth pointing out that the SBR2 algo-
rithm, by virtue of its cost function, tends to impose spectral 
majorisation on the output signals provided this is consistent 
with the requirement for strong decorrelation. This enables it 
to be used to good effect for broadband subspace decomposi-
tion. Unfortunately, due to limited space it is not possible to 
explain that property here. 

In this short paper we have only presented the SBR2 al-
gorithm for the relatively simple case of two signal channels. 
This is sufficient to explain the key features of our approach. 
However, the method may be generalised to multiple chan-
nels in several ways. One of these may be viewed as a gener-
alisation of the classical Jacobi algorithm for matrix diago-
nalisation. The results presented in the next section were pro-
duced using this method. 

4. RESULTS 

In order to demonstrate the computational effectiveness of 
the SBR2 algorithm, we present the results of a simple com-
puter simulation experiment relating to broadband subspace 
decomposition. With reference to (2.2), the propagation of 
three signals onto five sensors was modelled by means of a 
5x3 polynomial mixing matrix whose entries were 
order-5 FIR filters with coefficients drawn randomly from a 
uniform distribution in the range [-1, 1]. The source signals 
took the form of independent BPSK sequences for which 
each sample takes the value  with probability 1/2. Gaus-
sian random noise was added to each simulated sensor out-
put with variance chosen to achieve the desired SNR. 
The experiment was repeated many times keeping the same 
input data and mixing matrix but with a different level of 
noise for each trial (independently generated). The number 
of samples, T, used to estimate the space-time covariance 
matrix in (3.3) was chosen to be 1000. The correlation win-
dow parameter, W, was set to 5 reflecting the statistics of the 
data and the order of the mixing matrix. For each chosen 
value of SNR, the SBR2 algorithm was used to strongly 
decorrelate the signals by diagonalising the estimated poly-
nomial covariance matrix as indicated in (2.4). The algo-
rithm was allowed to run for 500 iterations in each case.  
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The signal and noise subspaces were then separated, as-
suming that the SBR2 algorithm had converged. The signal 
subspace was simply defined by the three output channels 
with the highest estimated power. The integrity of the signal 
and noise subspaces was quantified using a measure of the 

form sn ααα /= where sα and nα denote the total ex-
pected power of the original signals projected onto the com-
puted signal and noise subspaces respectively. The smaller 
the value of α  the more reliable the subspace estimation. 
The values of sα  and nα  were computed directly from the 
paraunitary matrix produced by the SBR2 algorithm 
and the known mixing matrix . Note that for unit power 
i.i.d. input signals (in the absence of noise) the cross-spectral 
density matrix for the decorrelated signals generated using 

 is given by 
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The value of α as a function of SNR is plotted in Fig.1. 

Each point on the graph represents the value of α for a sin-
gle trial. It can be seen that for values of SNR greater than -
5dB the value of α is less than 0.1 falling to less than 0.01 
for SNR values greater than 5dB. This indicates that the algo-
rithm is capable of effective broadband subspace decomposi-
tion.  

Fig.2 shows how the magnitude, g, of the dominant off-
diagonal coefficient behaves as a function of iteration num-
ber when the SNR value was set at 5dB. Within the first 200 
iterations, it falls to less than 0.02 although the progress is 
not monotonic. The non-monotonic behaviour is to be ex-
pected since it is always possible for a reduction in the di-
agonal coefficients at non-zero lag to produce an increase in 
the off-diagonal coefficients.  

Fig.3 relates to the same trial as Fig.2 (5dB) and depicts 
the power spectral density of the strongly decorrelated output 
signals produced using SBR2. Each line constitutes the plot, 
for a given value of k, of the kth diagonal element of the 
cross-spectral density matrix in (4.1), evaluated at  
for 

ωiez =
πω 20 ≤< . This illustrates the tendency of the SBR2 

algorithm to generate spectrally majorised output signals as 
mentioned in section 3. The corresponding plots for the 
mixed signals prior to applying SBR2 are presented for com-
parison in Fig.4. 

5. CONCLUSIONS 

In this paper we have introduced the concept of a polyno-
mial matrix EVD and suggested a tractable approach to per-
forming the necessary computation. One specific algorithm 
has been outlined and some initial results presented. In many 
respects, the method presented here may be viewed as a 
direct extension of the Jacobi algorithm for conventional 
eigenvalue decomposition. A proof of convergence has been 
obtained but cannot be presented here. We have only illus-
trated the relevance of the SBR2 algorithm to signal proc-
essing in the context of strong decorrelation and broadband 
subspace decomposition. However, it could have as wide a 
range of applications for convolutive (broadband) sensor 
array signal processing as the conventional EVD or SVD 
algorithm does for instantaneous (narrowband) sensor array 
signal processing. It has already been applied successfully to 
data obtained from real sensor arrays in a number of applica-
tion areas including sonar and seismology. However, discus-



sion of the specific applications and results is beyond the 
scope of this paper. It has also been adopted successfully by 
other researchers for the purpose of designing oversampled 
filterbanks for channel coding [8] and for second order blind 
signal separation, applied to polarised signals from a 3-axis 
seismic sensor array using quaternion (hypercomplex) arith-
metic [9]. 
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Fig.1. Performance measure for broadband subspace decomposition. 
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Fig.2.  Convergence behaviour observed in case of 5dB SNR. 
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Fig.3. Power spectral density of output signals generated using 

SBR2 at 5dB SNR. 

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Frequency

P
S

D

Mixed Signal 1
Mixed Signal 2
Mixed Signal 3
Mixed Signal 4
Mixed Signal 5

 
 
Fig.4.  Power spectral density of mixed signals at 5dB SNR before 

applying SBR2.  
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