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ABSTRACT
A new framework is proposed in this paper to solve the rever-
beration time (RT) estimation problem in occupied rooms. In
this framework, blind source separation (BSS) is combined
with an adaptive noise canceller (ANC) to remove the noise
from the passively received reverberant speech signal. A
polyfit preprocessing step is then used to extract the free de-
cay segments of the speech signal. RT is extracted from these
segments with a maximum-likelihood (ML) based method.
An easy, fast and consistent method to calculate the RT via
the ML estimation method is also described. This framework
provides a novel method for blind RT estimation with robust-
ness to ambient noises within an occupied room and extends
the ML method for RT estimation from noise-free cases to
more realistic situations. Simulation results show that the
proposed framework can provide a good estimation of RT in
simulated low RT occupied rooms.

1. INTRODUCTION

Room reverberation time is a very important parameter that
qualifies the room acoustic quality [1]. This parameter is de-
fined as the time taken by a sound to decay 60 dB below
its initial level after it has been switched off. Many meth-
ods have been proposed to estimate the RT during recent
years [2][3][4][5]. The maximum-likelihood (ML) estima-
tion method proposed in [5] which utilizes a passively re-
ceived speech signal has received a lot of attention due to its
simplicity and efficiency. In this method, an exponentially
damped Gaussian white noise model is used to describe the
reverberation diffusive tail signal. An ML estimation method
is then performed on segments of the speech signal to mea-
sure the time-constant of the decay. The most likely RT
is identified from a series of estimates by using an order-
statistic filter. As shown by the authors, it provides reliable
RT estimates in a noise free environment. To estimate the
RT in noisy environments, such as occupied rooms, where
many noises are generated by the occupants, this method po-
tentially only considers the signal decay range between the
initial maximum of the decay curve and the point where the
decay curve intersects the background noise. When the noise
is large, for example comparable with the excited speech sig-
nal, the results will be contaminated or even incorrect. There-
fore this method is limited by the noise level and not suitable
for occupied rooms.

To make the ML RT estimation method more robust and
accurate, an intuitive way is to remove the unknown noise
signal from the received speech signal as much as possible
before RT estimation. A powerful tool for extracting some
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Figure 1: Proposed blind RT estimate frame work for occu-
pied rooms.

noise interference signal from a mixture of signals is the
convolutive BSS method [6]. Naturally, given two spatially
distinct observations, BSS can separate the mixed signals
to yield two independent signals. One of these two signals
mainly consists of the excitation speech signal plus residue
of noise and the other signal contains mostly the noise signal.
Using this estimated noise signal as a reference signal the
noise contained in the received speech signal can then be re-
moved by an ANC. Our new framework is motivated by BSS
and ANC. Different stages of this framework in an occupied
room are shown in Fig.1. The signal s1(n), which is assumed
to be the noise signal in this work, is independent with the
excitation speech signal s2(n). The passively received sig-
nals x1(n) and x2(n) are modelled as convolutive mixtures of
s1(n) and s2(n). The room impulse response h ji(n) is the im-
pulse response from source i to microphone j. BSS is used
firstly to obtain the estimated excitation speech signal ŝ2(n)
and the estimated noise signal ŝ1(n). The estimated noise
signal ŝ1(n) then serves as the reference signal for the ANC
to remove the noise component from x1(n). The output of
the ANC ŷ12(n) is an estimation of the noise free reverberant
speech signal y12(n). As compared with x1(n), it crucially
retains the reverberant structure of the speech signal and has
a low level of noise, therefore it is more suitable to estimate
the RT of the occupied room. To remove the guess work of
the window length selection in the ML method and reduce
the variance of the RT estimates, we use an overlap polyfit
method as a preprocessing step. The decay segments in z(n)
which contain most of the free decay samples of the reverber-
ant speech signal are extracted by this preprocessing. Then
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the ML estimation method is performed only on these decay
segments. Based on the idea of bisection [5], a new method
to calculate the RT is also provided in the ML RT estima-
tion method. Compared with other calculation methods this
method has some advantages, as will be discussed later.

The following section introduces the BSS process. The
ANC is described in Section 3. The polyfit preprocessing is
described in Section 4. Section 5 describes the ML method.
A bisection algorithm for the ML estimation method is also
introduced. Simulation results are given in Section 6. Section
7 summarizes the paper.

2. BLIND SOURCE SEPARATION

As shown by Fig.1, the goal of BSS is to extract the esti-
mated noise signal ŝ1(n) from received mixture signals x1(n)
and x2(n). If we assume that the room environment is time
invariant, the received mixtures x1(n) and x2(n) can be mod-
eled as weighted sums of convolutions of the source signals
s1(n) and s2(n). Assume that N sources are recorded by M
microphones (here M=N=2) the equation that describes this
convolved mixing process is:

x j(n) =
N

∑
i=1

P−1

∑
p=0

si(n− p)h ji(p) (1)

where si(n) is the source signal from a source i, x j(n) is the
received signal by a microphone j, and h ji(n) is the P-point
response from source i to microphone j. Using a T-point
windowed discrete Fourier transformation (DFT), time do-
main signal x j(n) can be converted into the time-frequency
domain signal X j(ω,n) where ω is a frequency index and n
is a time index. For each frequency bin we have

X(ω,n) = H(ω)S(ω,n) (2)

where S(ω,n) = [s1(ω,n), · · · ,sN(ω,n)]T and X(ω,n) =
[x1(ω,n), · · · ,xM(ω,n)]T are the time-frequency representa-
tions of the source signals and the observed signals respec-
tively and (·)T denotes vector transpose. The separation can
be completed by the unmixing matrix W(ω) in a frequency
bin ω

Ŝ(ω,n) = W(ω)X(ω,n) (3)

where ŝ(ω,n) = [ŝ1(ω,n), · · · , ŝN(ω,n)]T is the time-
frequency representations of the estimated source signals and
W(ω) is the frequency representation of the unmixing ma-
trix. W(ω) is determined so that ŝ1(ω,n), ..., ŝN(ω,n) be-
come mutually independent. Exploiting the nonstationary of
the speech signal we define the cost function as follows:

J(W(ω)) = argmin
T

∑
w=1

K

∑
k=1

F(W)(ω,k), (4)

where K is the number of signal segments and F(W)(ω,k)
is defined as

F(W)(ω,k) = ‖RŜ(ω,k)−diag[RŜ(ω,k)]‖2
F (5)

where RŜ(ω,k) is the autocorrelation matrix of the separated
signals and ‖ · ‖2

F denotes the squared Frobenius norm, k is
the block index. The separation problem is then converted
into a joint diagonalization problem. Obviously, the solution

W(ω) = 0 will lead to the minimization of F(W)(w,k). To
avoid this some constraints should be added to the unmix-
ing matrix. In [6] a penalty function is added to convert the
constrained optimization problem into an unconstrained op-
timization problem. The cost function of penalty function
based joint diagonalization is as follows:

J(W(ω)) = argmin
T

∑
w=1

K

∑
k=1

F(W)(ω,k)+λg(W)(ω,k)

(6)
where λ is the penalty weight factor and g(W)(ω,k) is a
form of penalty function based on a constraint of the unmix-
ing matrix. With a gradient-based descent method we can
calculate the unmixing matrix after several iterations from
equation (6). The separated signals ŝ1(n) and ŝ2(n) can then
be obtained from (3) after applying an inverse DFT.

3. ADAPTIVE NOISE CANCELLER

After BSS we obtain the estimated noise signal ŝ1(n). This
signal is then used as a reference in the ANC stage signal to
remove the noise component from the received signal x1(n).
A new variable step size LMS algorithm which is suitable
for speech processing is used in the ANC. The updates of the
step size can be formulated as follows:

e(n) = x1(n)− ŝT
1 (n)w(n) (7)

g(n) =
e(n)̂s1(n)√

L[σ̂2
e (n)+ σ̂2

s (n)]
(8)

p(n) = βp(n−1)+(1−β )g(n) (9)

µ(n+1) = αµ(n)+ γ ‖p(n)‖2
F (10)

where µ(n) is the variable step size, ŝ1(n) =
[ŝ1(n), · · · , ŝ1(n − L + 1)]T , w(n) is the weight vector
of the adaptive filter, L is the filter length, σ̂2

e (n) and σ̂2
s (n)

are estimations of the temporal error energy and the temporal
input energy, 0 < α < 1, 0 < β < 1, γ > 0, g(n) is the
square root normalized gradient vector, p(n) is a smoothed
version of g(n). The recursion of the filter weight vector is
as follows

w(n+1) = w(n)+ µ(n)
e(n)̂s1(n)

L[σ̂ 2
e (n)+ σ̂2

s (n)]
(11)

The square root normalized gradient vector g(n) in (8) is
used to obtain a robust measure of the adaptive process. The
first-order filter based averaging operation in (9) removes the
disturbance brought by the target signal. The variable step
size µ(n) in (10) is adapted to obtain a fast convergence rate
during the early adaptive process and a small misadjustment
after the algorithm converges. The adaptation of the weight
vector in (11) is based on the sum method in [7] which is de-
signed to minimize the steady state mean square error. Equa-
tions (7)(8)(9)(10)(11) provide a new variable step size LMS
algorithm for the ANC stage. The output signal of the ANC
ŷ12(n) should then be a good estimation of the noise free re-
verberant speech signal y12(n). Next, estimating of the RT
from ŷ12(n) must be considered.
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4. POLYFIT PREPROCESSING

In this stage, the input signal is the estimated noise free re-
verberant speech signal ŷ12(n). The overlap polyfit method
is used to extract the decay segments of this signal. The out-
put of this stage is the signal z(n) which contains the decay
segments of ŷ12(n). In accordance with the ML estimation of
RT, we use the same exponentially damped Gaussian white
noise model which has been used in [5]. The mathematical
formulation is as follows:

ŷ12(n) = a(n)v(n) (12)

where v(n) is an i.i.d. term with normal distribution N(0,σ)
and a(n) is a time-varying envelope term. Let a single decay
rate τ describe the damping of the sound envelope during free
decay, then the sequence a(n) is uniquely determined by

a(n) = exp(−n/τ) = an (13)

where
a = exp(−1/τ) (14)

In this stage, we first use a moving window with an appro-
priate length and shift to obtain overlap speech frames. From
the model of the reverberant speech tail in (12), which is as-
sumed to hold in each frame, the logarithm of the envelope of
the free decay segment is a line with negative slope. Because
in reality the RT should have a reasonable span, for example,
0s to 3s, such a slope should have a corresponding range. A
polyfit operation is then performed on each frame to extract
the slope. By discarding the frames whose slopes are outside
such a range, the speech signal is divided into several con-
tinuous decay segments. The longest segments contained in
z(n) should contain the most likely free decay segments of
the speech signal.

As a preprocessing stage for the ML RT estimation
method it has several advantages. At first it provides the
window length for the ML RT estimation method automat-
ically. Although in [5] it has been found that increasing win-
dow length reduces the variability in the estimates, the win-
dow length is limited by the duration and occurrence of the
gaps between sound segments. The choice of the window
length is a trade off between the accuracy and variance of
the estimated RTs. After the polyfit preprocessing the win-
dow length of the ML estimation must be less than the length
of the extracted signal segment. It is then chosen automat-
ically according to the segment length. Simulation results
show that half length of the segment length will be a good
choice of the window length. Secondly, the variance of RT
estimates is reduced because most samples of these segments
are in agreement with the Gaussian damped model, as will be
confirmed in later simulations.

5. ML RT ESTIMATION METHOD

The ML estimation method is then performed on the cho-
sen segments z(n). From the definition of RT and the signal
model, the relationship between RT and the decay rate τ is
as follows [5]:

T60 =
−3τ

log10(exp(−1))
= 6.91τ (15)

The decay rate τ is extracted by the ML estimation method.
Denote the N-dimensional vectors of z(n) and a(n) (the same

as that in (13) and (14)) by z(n) and a(n) and N is the estima-
tion window length, we can obtain the logarithm likelihood
function

E{L(z;a,σ)}=−N(N−1)
2

ln(a)−
N
2

ln(2πσ2)− 1
2σ2

N

∑
n=1

a−2nz2(n) (16)

where σ is the initial power of the signal. With this func-
tion the parameters a and σ can be estimated using an ML
approach. From each segment we can obtain a series of esti-
mates of RT. All estimates are used to identify the most likely
RT of the room.

By considering the relationship between a and decay rate
τ , we propose a new bisection method with respect to the RT
rather than with respect to a in [5]. The range of the RT is set
between 3s and 0.1s. As the time-constant is not required to
be arbitrarily precise, the accuracy is limited to 10ms in our
method. The update of our bisection method is as follows:

i). Initialization

T 60 min = 0.1;T 60 max = 3;accuracy = 0.01;

iter = log2((T 60 max−T 60 min)/accuracy))

where accuracy is the accuracy of the estimation of RT and
iter is the iteration number.

2). Iteration

T (i) = (T 60 min+T 60 max)/2
a(i) = exp(−6.91/T (i))

g(i) =
∂L(y;a,σ)

∂a
g(i) > 0 then T 60 min = T (i)
g(i) < 0 then T 60 max = T (i)

As the authors point out in [5], the disadvantage of the bi-
section method is that it works poorly in regions near the
true value of a. From (14) and (15) we know that a is not
a linear transform of RT. Our bisection on RT is actually a
non-equivalent bisection with respect to a. Compared with
the fast block algorithm proposed in [8] our algorithm has a
number of advantages:

1. No step size needs to be selected.
2. No initial value of a is needed.
3. It always converges and converges quickly within a

fixed number of steps.

6. SIMULATION

In this section we examine the performance of the proposed
framework. The flow chart of the simulations is shown in
Fig.1. The occupied room and its impulse response h ji be-
tween source i and microphone j are simulated by an im-
age room model [9]. The room size is set to be 10*10*5
meter3 and the reflection coefficient is set to be 0.7 in rough
correspondence with the actual room. The RT of this room
measured by Schroeder’s method [2] is 0.27s. The excita-
tion speech signal and the noise signal are two anechoic 40
seconds male speech signals with a sampling frequency of
8kHz, and scaled to make the signal to noise ratio (SNR) to
be 0dB over the whole observation. The position of these two
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sources are set to be [1m 3m 1.5m] and [3.5m 2m 1.5m]. The
positions of the two microphones are set to be [2.45m 4.5m
1.5m] and [2.55m 4.5m 1.5m] respectively. As shown by
Fig.1, BSS is performed firstly to extract the estimated noise
signal ŝ1. This signal contains mostly the noise signal and a
low level of the desired speech signal. To evaluate the BSS
performance we use a noise to signal ratio (NSR) which is
the energy ratio defined between the component of the noise
signal and the component of the speech signal contained in
ŝ1. The NSR of ŝ1 in this simulation is 38dB, therefore it
has a strong correlation with the noise signal s1 and a slight
correlation with the speech signal. This signal is then used
in the ANC model as a reference signal. The filter length of
the ANC is set to be 500 and the parameters α , β , γ are set
to be 0.99, 0.9999, 200 respectively. The last 1000 samples
of the filter coefficients are used to measure the steady-state
performance. The output signal of the ANC contains two
components: the reverberant speech signal and the residue
of the noise signal. The signal to noise ratio (SNR) between
these two components is 43dB. The first approximately 10s
of this signal will be used to estimate the RT. We plot the
first approximately 10s of the received signal x1 and the out-
put signal of ANC ŷ12 in Fig.2(a) and Fig.2(b) respectively.
It is easy to see that after BSS and ANC the noise contained
in x1 is reduced greatly.
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Figure 2: The received mixture signal, the output of ANC
and the extracted signal by polyfit process

At first we estimate the RT by using the ML RT estima-
tion method [5] with the whole output signal of ANC first.
According to the analysis and simulations in [5], the window
length is set to be 1200, which is approximately equal to 4τ ,
to provide a good choice of the window length. The results
are shown in Fig.3(a).

Then the polyfit process is performed to extract the free
decay segments. The window length of our polyfit method is
set to be 400 samples (0.05s) and the shift is set to be 10 sam-
ples. Ten segments extracted by the polyfit stage are shown
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Figure 3: (a) The estimates of RTs by ML method with the
whole output signal of ANC and a window length of 1200.
(b)The estimates of RTs by ML method with the output sig-
nal of polyfit process and a window length of 1200. (c)The
estimates of RTs by ML method with the output signal of
polyfit process and automatical decided window length.

in Fig.2(c). Note that three segments are connected in the
figure in the interval 75,000 to 80,000.

Finally, two experiments are performed to show the two
advantages of the polyfit process which we analyzed in sec-
tion 4. In the first experiment, the extracted signal which is
the output of the polyfit process is used to estimate the RT
by using the ML method with a window length of 1200. The
results are shown in Fig.3(b). The second experiment is the
same as the first experiment except the window length of the
ML method is decided automatically, which is half of the
segment length. The results of this experiment are shown in
Fig.3(c).

Compare Fig.3(a) with Fig.3(b) we can see that the vari-
ance of the estimates of the RT is reduced greatly by using
the polyfit process, where most decay samples are extracted.
The first peak in Fig.3(a) is 0.29s, but it is not clear and the
variance of the RT estimates is very large. In Fig.3(b) the
variance of the RT estimates is reduced greatly and the first
peak is 0.35s. Although both results in these two figures are
larger than the theoretical RT of 0.27s due to the lack of sharp
transients in the clean speech, the bias of the model in ML
method and the influence of the interference, they are rea-
sonable and acceptable in most applications.

Compare Fig.3(c) with Fig.3(b) we can see that the vari-
ance of the RT estimates in both figures are comparable. The
first peak in Fig.3(c) is 0.3s, which is also a reasonable and
acceptable result. Thus we can conclude that performance
of the ML method with automatical decided window length
is comparable, if not better, with the performance of the ML
method with a good choice of the window length.

From all the simulations above we can see that the combi-
nation of BSS and ANC can remove the noise signal greatly
whilst retaining the key reverberant structure to make the
high-noise environment RT estimation possible. Further
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more, the polyfit process has been added before the ML RT
estimation method to reduce the variance of the results and
remove the ‘guess’ work of the window length of the ML RT
estimation method.

We have performed other experiments where one of the
speech signals in the previous simulations is replaced by a
white noise signal, as a simulated interference in the oc-
cupied room. Similar estimation results are also obtained.
However limited by the room model and the performance of
frequency domain BSS, this framework is designed to esti-
mate RT in the occupied room whose RT is less than 0.3s.
As shown by our simulations above, nonetheless, reliable RT
can be extracted using this framework within a highly noisy
occupied room, something that has not previously been pos-
sible.

7. CONCLUSION

This paper proposes a new framework for blind RT estima-
tion in occupied rooms. In this framework, BSS is combined
with an ANC to remove the noise of the received speech sig-
nal. A polyfit stage is added to improve the performance of
the ML RT estimation method. A bisection method is used
in the ML method which provides many advantages over the
previous calculation method. Simulation results show that
the noise is removed greatly from the reverberant speech sig-
nal and the performance of this frame work is good in a sim-
ulated low RT occupied room environment. Due to the mo-
tivation of our framework BSS and ANC can be potentially
used in many reverberation time estimation methods as a pre-
processing. Although the mixing model used in this paper is
not suitable for many applications, this framework provides
a new way to overcome the noise disturbance in RT estima-
tion. However, limited by the performance of convolutive
BSS, this framework is only appropriate for the low RT esti-
mation case. Future work will focus on the theoretic analysis
of this blind RT estimate framework and the improvement
of its stages, especially the improvement of convolutive BSS
under long reverberation environments.
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