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ABSTRACT

In mobile multiple-access communications, not only the lo-
cation of active users, but also their number varies with time.
In typical analyses, multiuser detection theory has been de-
veloped under the assumption that the number of active users
is constant and known at the receiver, and coincides with
the maximum number of users entitled to access the system.
This assumption is often overly pessimistic, since many users
might be inactive at any given time, and detection under the
assumption of a number of users larger than the real one may
impair performance.

This paper assumes a dynamic environment where users
are continuously entering and leaving the system, and under-
takes a general approach to the problem of identifying active
users and estimating their parameters and data. Our goal is to
lay the foundation of multiuser detection theory in an envi-
ronment where the number and the parameters of active users
are unknown at the receiver, and in addition may change from
one observation time to the next following a known dynamic
model.

Using Random-Set Theory, we develop the tools that are
needed for data detection in addition to parameter estima-
tion, whereby a dynamic model for the evolution of param-
eters has been selected. Application of this theory allows
Bayesian-filter equations to be written, which describe the
evolution with time of the optimum causal multiuser detec-
tor.

We illustrate this theory through a simple example of ap-
plication, consisting of the detection of the number and iden-
tity of active interferers and of the data they carry.

1. INTRODUCTION

We assume signal transmission over a common channel
(specifically, we consider CDMA for simplicity’s sake). Let

s(x(0)
t ) denote the signal transmitted by the reference user at

discrete timet, t = 1,2, . . ., ands(x(i)
t ), i = 1, . . . ,K −1, the

signals that may be transmitted at the same time byK − 1
interferers. Each signal has in it a number of known param-
eters, reflected by the known functions( ·), and a number of

random parameters, summarized byx
(i)
t . The indexi reflects

the identity of the user, and is typically associated with its
signature. The observed signal at timet is a sum of the users
active at timet, and of a stationary random noisezt , i.e.:

yt = ∑
x

(i)
t ∈Xt

s(x(i)
t )+zt (1)

whereXt is a random set.

The tool we use in our analysis israndom set theory
(RST). Using this tool, which was previously applied in
the context of multitarget tracking and identification (see,
e.g., [1–3, 5]), the whole set of users is modeled as a sin-
gle entity. RST develops a probability theory over finite sets
whose randomness is both in the number of their elements
and in the values they take on. Since users, along with their
parameters, are elements of a finite random set, RST provides
a natural approach to multiuser detection in a dynamic envi-
ronment. RST unifies in a single step two steps that would be
taken separately without it, viz., detection of active users and
estimation of their parameters. In the random set framework,
the multiuser state is a set comprising a random number of
single user states, each of which is a random vector. The ba-
sic problem amounts to computing the a posteriori density of
this set-valued quantity.

A motivation for the development presented in this pa-
per can be obtained by glancing over Fig. 2. This refers
to a 3-user system, and compares two receivers. One does
maximum-likelihood (ML) detection of users’ data under the
assumption that all interferers are active, while the otherde-
tects at the same time the number of interferers and the users’
data. Several activity factorsα are considered. It is seen that
the latter receiver performs better wheneverα is not close to
one, and is more robust to the variations ofα (whose value is
assumed unknown to the receivers). A further improvement
in performance can be obtained by providing the receiver
with side information about the users’ activity factor, and
about their behavior in terms of appearance, disappearance,
and movement from one observation interval to the next. The
balance of this paper is devoted to showing how, using RST,
this side information can be exploited by a receiver.

Random-set theory can be applied with only minimal
(yet, nonzero) consideration of its theoretical foundations.
Roughly speaking, a random set is a mapX between a sam-
ple space (containing the outcomes of a random experiment)
and a family of subsets of a spaceS. This is the space of the
unknown parameters of the active interferers. For example,
we haveS = {0, . . . ,K −1} if all parameters of the prospec-
tive users are known, except their number and their identi-
ties. Or we haveS = R×{0, . . . ,K − 1}, R the set of real
numbers, if one parameter (e.g., the interferer power) is also
unknown in addition to the users’ number and identities. We
can also haveS = R×{0, . . . ,K −1}×{±1} if the (binary
antipodal) data are to be detected. In mathematical terms,S

is generally ahybrid spaceS , R
d ×U , with U a finite dis-

crete set andd ≥ 0: in the rest of this paper we restrict our
attention to the cased = 0, i.e. only the identities (and possi-
bly the data) of the active users are unknown at the receiver
end. It is worth noticing that in the above discussion it has
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been assumed that the reference user may be itself active or
not: the situation that user ”0” is active with probability one,
so that the other users represent intermittent interference, can
be easily accounted for by modifying (1) as

yt = s(x(0)
t )+ ∑

x
(i)
t ∈Xt

s(x(i)
t )+zt (2)

where now the random setXt varies in the spaceS =
{1, . . . ,K − 1} or S = {1, . . . ,K − 1}× {±1} whether only
user identities, or user identities and data are to be detected.

At the basis of RST is the concept ofbelief functionof a
random setX. This is defined as

βX(C) , P(X ⊂ C)

whereC is a subset of an ordinary multiuser state space:
C ⊂ S. The densityof the belief function is defined as
its “set derivative” (this is a generalized Radon-Nikodým
derivative). Set derivatives can be computed by using an RST
“toolbox,” and the resulting densities carry, from a practical
viewpoint, the relevant properties of standard density func-
tions of probability theory [3].

The ingredients necessary for application of RST to mul-
tiuser detection are the following:
➀ The belief densityf (yt | Xt). This follows from the

channel model and the measuring method.
➁ The belief densityf (Xt | Xt−1). This follows from the

model of the dynamics of the set of active users. The
main assumption here is that{Xt}

∞
t=1 forms a random

set sequence with the Markov property, i.e., such thatXt
depends on its past only throughXt−1.

Once the above densities are made available, they are used in
theBayesian filter recursions

f (Xt | y1:t−1)

=
∫

f (Xt | Xt−1) f (Xt−1 | y1:t−1)δXt−1 (3)

f (Xt | y1:t)

∝ f (yt |Xt) f (Xt | y1:t−1)

which allow one to generate recursively the estimates ofXt ,
for example in the form

X̂t = argmax
Xt

f (Xt | y1:t)

The integral in (3) is a “set integral,” the inverse of the set
derivative.

With our channel model, the receiver detects only a su-
perposition of interfering signals. Thus, the random set de-
scribing the receiver, denotedyt , has conditional density
function

f (yt |Xt) = fz(yt −σ(Xt)) (4)

wherefz( ·) is the density function of the additive noise, and

σ(Xt) , ∑
x

(i)
t ∈Xt

s(x(i)
t ) (5)

Assuming the noise to be Gaussian, we have

fz(yt −σ(Xt)) ∝ exp{−‖yt −σ(Xt)‖
2/N0}

Thus, the estimate ofXt is performed by minimizing, over
Xt , the function

m(Xt) , ‖yt −σ(Xt)‖
2− ε(Xt)

whereε(Xt ) , N0 ln f (Xt | y1:t−1). The first term is the Eu-
clidean distance between the observation and the sum of the
interfering signals. This alone would be used in ML detec-
tion. The second term in the RHS of the above can be viewed
as a correction term, coming from the uppermost step of it-
erations, and reflecting the influence onXt of its past his-
tory. This plays the role of a priori information to be used
in maximum a posteriori decisions, and its consideration and
evaluation is the main point of this paper.

2. EXAMPLE OF APPLICATION: DETECTION OF
ACTIVE USERS

Assume now the specific situation of a DS-CDMA system
with signature sequences of lengthL and additive white
Gaussian noise. At discrete timet, we may write, for the
sufficient statistics of the received signal,

yt = RAbt(Xt )+zt , t = 1, . . . ,T (6)

whereXt is now the random set of all active users,R is the
L×L correlation matrix of the signature sequences (assumed
to have unit norm),A is the diagonal matrix of the users’
signal amplitudes, the vectorbt(Xt) has nonzero entries in
the locations corresponding to the active-user identitiesde-
scribed by the components ofXt , andzt ∼N(0,(N0/2)R) is
the noise vector, withN0/2 the power spectral density of the
received noise.

Throughout this paper we assume that the only unknown
signal quantities may be the identities of the users and their
data. Specifically, we may distinguish four cases in our con-
text:
➀ Static channel, unknown identities, known data.This cor-

responds to a training phase intended at identifying users,
and assumes that the user identities do not change during
transmission. In this case we writeX in lieu of Xt .

➁ Static channel, unknown identities, unknown data.This
may correspond to a tracking phase following➀ above.
We write againX in lieu of Xt , and assume thatX con-
tains the whole transmitted data sequence.

➂ Dynamic channel, unknown identities, known data.This
corresponds to identification of users preliminary to data
detection (which, for example, may be based on decorre-
lation).

➃ Dynamic channel, unknown identities, unknown data.
This corresponds to simultaneous user identification and
data detection in a time-varying environment.

If we assume that, at every discrete time instant, only one
binary antipodal symbol is transmitted, trained acquisition
corresponds to the transmission of known bit streams, and
hence toS = {0, . . . ,K −1}, while in untrained acquisition
user identification and data detection should be performed
jointly, which corresponds toS = {0, . . . ,K −1}×{±1}.

Consider now the construction of a dynamic model for
Xt . We assume that fromt −1 to t some new users become
active and some old users become inactive. We write

Xt = St ∪Nt (7)
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whereSt is the set ofsurvivingusers still active fromt −1,
andNt is the set ofnew users becoming active att. The
conditionXt−1∩Nt = /0 is forced, i.e., a user ceasing trans-
mission at timet −1 cannot re-enter the set of active users at
time t.

For the sake of clarity, here we limit ourselves to the
construction of a dynamic model forXt with trained acqui-
sition. Suppose that there aren active users att − 1, with

Xt−1 = {x
(1)
t−1, . . . ,x

(n)
t−1}. Then we may write, for the set of

surviving users,

St =
K−1⋃

i=0

X
(i)
t (8)

whereX
(i)
t denotes either an empty set (a user has become

inactive) or the singleton{x(i)
t }. Let µ denote the “persis-

tence” probability, i.e., the probability that a user survives
from t −1 to t. We obtain, for the conditional density ofSt
given thatXt−1 = B:

fSt |Xt−1
(C | B) = µ |C|(1− µ)|B|−|C| , C⊆ B (9)

while it is 0 otherwise
For new users, we assume again a binomial birth process

with parameterα. SinceK is the maximum user number, we
have:

fNt |Xt−1
(C |B) = α |C|(1−α)K−|C|−|B| ,C∩B = /0 (10)

Finally, assuming that births and deaths of users are con-
ditionally independent givenXt−1, the generalized convo-
lution operation ruling the pdf of the union of independent
random sets [1] becomes, under our assumptions:

fXt |Xt−1
(C |B) (11)

= ∑
W⊆C

fSt |Xt−1
(W | B) fNt |Xt−1

(C\W | B)

= fSt |Xt−1
(C∩B) fNt |Xt−1

(C\ (C∩B)) (12)

Untrained acquisition can be dealt with similarly, provided
that the conditional densities in (9)-(10) are multiplied by a
factor depending on|C| to account for the data priors.

Two alternative strategies can at this point be conceived
to estimateXt , whether trained or untrained situations are
considered. The former one relies upon implementing the
Bayes recursions outlined above, thus defining a causal set-
sequence estimator. An alternative approach could be to con-
sider the likelihood of the set sequenceX1, . . . ,XT , i.e.:

f (X1, . . . ,XT | y1:T) (13)

∝ f (y1:T | X1, . . . ,XT) f (X1)
T

∏
t=2

f (Xt |Xt−1)

where the Markov nature of the model has been exploited1.
Since under both trained and untrained acquisition the un-
known sets may take on a finite number of configura-
tions, maximizing (13) simply amounts to determining a
maximum-metric path in a trellis of depthT: the state space
has cardinality 2K for trained acquisition, and 3K for un-
trained acquisition, and the maximization can be undertaken
in both cases through a Viterbi algorithm.

1Implicit in the above is the need of assigning a densityf (X1), which
obviously depends on the prior information as to the channelstate at the
beginning of the transmission.

3. RESULTS

We first illustrate the advantages of joint channel sensing and
user demodulation by considering the case of a static CDMA
channel with 7 users and processing gain 7; it is further as-
sumed that user “1” is active with probability one, while the
other users may be active or not, the number of active inter-
ferers being a uniform discrete random variable. Fig. 1 shows
the bit error probability of a random-set-based detector. For
comparison purposes, we also show the performance of a
classical ML receiver assuming that all of the users are ac-
tive, and the single-user bound: for all receivers, the spread-
ing codes arem−sequences. The plots show that joint chan-
nel sensing and data demodulation prevents the performance
impairment incurred by traditional multiuser systems under
unknown channel occupancy.
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Static Channel, K=7, L=7, T=1; reference user is active w.p. 1

Random Sets−based ML−MUD
Standard ML−MUD
SU bound

Figure 1:Bit error probability of the reference user in a mul-
tiuser system with3 users, independently active with proba-
bility α.

Fig. 2 compares again “classic” ML multiuser detec-
tion [4], which assumes that all users are simultaneously
active, and ML detection based on RST, which detects si-
multaneously the number of active users and the data of the
reference user. The ordinate shows the bit error probabil-
ity of the reference user in a system with 3 users transmit-
ting binary antipodal signals, different active-user probabil-
ities (α = 0.1, 0.5, and 1), spreading sequences consisting
of Kasami sequences with length 15, and perfect power con-
trol (and hence equal received powers from all users). The
channel is Gaussian and static. The single-user bound is also
shown as a reference. This figure was commented upon in
Section 1.

We next consider the situation of a dynamic channel
where both the user identities and their data are to be esti-
mated. In this new situation no user is active with probabil-
ity one, and the common persistence probability isµ = 0.8,
while α = 0.2. We also assume a frame ofT = 10 signaling
intervals, and we consider the following situations: a) Esti-
mation of the setX1, under both noncausal (“Viterbi”) and
causal (“Bayes”) strategies; b) Estimation of the setX10, un-
der both non-causal and causal strategies. The quantity on
the vertical axis is the “bit sequence probability,” i.e., the
probability that at somet the estimated and the true bit stream
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Figure 2:Bit error probability of the reference user in a mul-
tiuser system with3 users, independently active with proba-
bility α. Lines with diamond markers: Classic multiuser ML
detection, assuming that all users are active. Line with circle
markers: ML detection using RST. Dashed curve: Single-
user bound.
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Figure 3:Dynamic Channel.

(transmitted by the active users, whose identities are in turn
unknown) do not coincide. Notice that the causality con-
straint has some perceivable, yet minor, effect at epocht = 1,
while at timet = 10 the two algorithms yield equivalent per-
formances, as they should. Additionally, some theoretical
developments, not shown here for want of space, show that
trained and untrained systems achieve close performances
under a dynamic scenario.

4. CONCLUSIONS

We have described a technique for estimating the received-
signal parameters in a CDMA system. Since the number of
active interferers is itself a random variable, the set of pa-
rameters to be estimated has a random number of random
elements. We have used a probability theory, called random-
set theory, to develop multiuser detection tools under these
conditions. In addition, we have developed Bayes-filtering

equations that describe the evolution of the multiuser detec-
tor in a dynamic environment, and evaluated its performance
also in comparison to a more traditional set-sequence estima-
tor.

Our results show how joint channel sensing and user de-
modulation can be advantageous whenever the number of ac-
tive users is unknown a priori. In addition, dynamic model-
ing of users’ activity can provide further benefits. Thus, RST
appears as a most promising tool to achieve fully adaptive
receivers.
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APPENDIX

This appendix describes, mostly in a qualitative fashion, the
fundamentals of Random-Set Theory. For a rigorous ap-
proach and for additional details, see [1–3,5].

A finite random setis a mappingX : Ω → F(S) from
the sample spaceΩ to the collection of closed sets of the
spaceS, with |X(ω)| < ∞ for all ω ∈ Ω. Here the spaceS
of finite random sets is assumed to be thehybrid spaceS =
R

d ×U , the direct product of thed-dimensional Euclidean
spaceR

d and a finite discrete spaceU . The elements ofS
characterize the users’ parameters, which we categorize as
continuous (d real numbers) and discrete (for example, the
users’ signatures and their information data). An element
of S is the pair(v,u), v a d-dimensional real vector, and
u∈U . The spaceS is endowed with a topology obtained as
the product of the Euclidean topology inRd and the discrete
topology inU .

Thebelief functionof a finite random setX is defined as

βX(C) , P(X⊆C) (14)

whereC is a closed subset ofS. The belief function char-
acterizes the probability distribution of a random finite set
X, and allows the construction of a density function ofX
through the definition of aset integraland aset derivative.
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LetC(S) denote the collection of closed subsets ofS. The
set derivative of a set functionF : C(S) → [0,∞) at a point
x ∈ S is defined as

δF
δx

(S) , lim
m̄(∆x)

F(S∪∆x)−F(S)

m̄(∆x)

wherem̄(·) denotes the hybrid Lebesgue measure, i.e. the
product of the ordinary measure inRd and of the counting
measure. Thus, the belief density of the random setX is
given by

fX(X) =
δβX

δX
( /0) (15)

Let f denote a function defined by

f (X) =
δF
δX

( /0)

The set integral off over the closed subsetS⊆ S is given by
∫

S
f (X)δX = (16)

f ({ /0})+
∞

∑
k=1

1
k!

∫

Sk
f ({x1, . . . ,xk})dm̄(x1) · · ·dm̄(xk)

where f ({x1, . . . ,xk}) = 0 if x1, . . . ,xk are not distinct (and
hence the set has less thank elements). Since we are dealing
with finite random sets, the summation above contains only
a finite number of terms.

The special cased = 0 (which corresponds to makingS
a discrete finite set) reduces the set integral to

f ({ /0})+
∞

∑
k=1

1
k! ∑

{x1 6=x2...,6=xk}⊆Sk

f ({x1, . . . ,xk}) (17)

since in this case the hybrid Lebesgue measure reduces to the
counting measure, and the Lebesgue integrals in (16) become
summations.

Set derivatives and set integrals turn out to be the inverse
of each other. The following generalized fundamental theo-
rem of calculus holds:

f (X) =
δF
δX

( /0) ⇐⇒ F(S) =

∫

S
f (X)δ (X) (18)

By using the above result, belief functions and belief densi-
ties can be derived from one another.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


