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ABSTRACT The tool we use in our analysis lmndom set theory

(RST). Using this tool, which was previously applied in

cation of active users, but also their number varies witletim '€ Context of multitarget tracking and identification (see
.g., [1-3, 5]), the whole set of users is modeled as a sin-

In typical analyses, multiuser detection theory has been d& & entity. RST develops a probability theory over finitesset

veloped under the assumption that the number of active usegén randomn is both in the number of their element
is constant and known at the receiver, and coincides witl{ 19S€ randomness is bo € number of their elements

the maximum number of users entitled to access the systerdd N the values they take on. Since users, along with their
This assumption is often overly pessimistic, since manysuse paramet;ars, are elﬁmentsl of aflnéte random seg RST provides
might be inactive at any given time, and detection under th& rr]:rirglérr?[ aRpSp'FouanCifiég irr?g t;:Jnselt(re s?éecte\?onsltneas %Z?Tv'cfu?g\gé
assumption of a number of users larger than the real one m%gken ceparatel without it 9 g tp o of P p "
impair performance. p y without it, viz., detection of active ssen

This paper assumes a dynamic environment where usef timation of their parameters. In the random set framework

are continuously entering and leaving the system, and unde ir? ?;udts'lé?irt ;f;e elz ;Soitv\fﬁ?hpgs;n?aﬁ drgrr%d\?erztg#r?'ggrbg-
takes a general approach to the problem of identifying activ icg roblem amou’nts to computing the a posteriori dénsit of
users and estimating their parameters and data. Our goal istiispset—valued Lantit puting P Yy
lay the foundation of multiuser detection theory in an envi- q Y-
ronment where the number and the parameters of active users A motivation for the development presented in this pa-
are unknown at the receiver, and in addition may change fromer can be obtained by glancing over Fig. 2. This refers
one observation time to the next following a known dynamido a 3-user system, and compares two receivers. One does
model. maximume-likelihood (ML) detection of users’ data under the
Using Random-Set Theory, we develop the tools that arassumption that all interferers are active, while the otleer
needed for data detection in addition to parameter estimdects at the same time the number of interferers and the’ users
tion, whereby a dynamic model for the evolution of param-data. Several activity factors are considered. It is seen that
eters has been selected. Application of this theory allowthe latter receiver performs better whenewes not close to
Bayesian-filter equations to be written, which describe th@ne, and is more robust to the variationsiofwhose value is
evolution with time of the optimum causal multiuser detec-assumed unknown to the receivers). A further improvement
tor. in performance can be obtained by providing the receiver
We illustrate this theory through a simple example of apWith side information about the users’ activity factor, and
plication, consisting of the detection of the number anaide about their behavior in terms of appearance, disappearance

In mobile multiple-access communications, not only the lo

tity of active interferers and of the data they carry. and movement from one observation interval to the next. The
balance of this paper is devoted to showing how, using RST,
1. INTRODUCTION this side information can be exploited by a receiver.

. I Random-set theory can be applied with only minimal
We assume signal transmission over a common channalle y bp y

> . A t, nonzero) consideration of its theoretical foundaio
(spg)()nflcally, we consider CDMA for simplicity’s sake). Let Roughly speaking, a random set is a nibetween a sam-

s(x; ') denote the signal transmitted by the reference user gle space (containing the outcomes of a random experiment)
discrete time, t =1,2,..., ands(x")), i =1,...,K — 1, the and a family of subsets of a spageThis is the space of the
signals that may be transmitted at the same timé&by1  unknown parameters of the active interferers. For example,
interferers. Each signal has in it a number of known paramwe haveS = {0,...,K — 1} if all parameters of the prospec-
eters, reflected by the known functisft ), and a number of tive users are known, except their number and their identi-
random parameters, summarized>&§9/. The index reflects  1€S: Or we havéS =R x {0,...,K — 1}, R the set of real

e denity of th user, and s typcally associated wih t ST0€T 1 0n paramele (e., e plererer poverh o
signature. The observed signal at titvie a sum of the users ’

i i ; N can also havé = R x {0,...,K — 1} x {£1} if the (binary
active attime, and of a stationary random noisg i.e.. antipodal) data are to be detected. In mathematical teéSms,

(i) is generally ahybrid spaceS £ RY x U, with U a finite dis-
yt= Z S(x¢ ') + 2t (1) crete set and > 0: in the rest of this paper we restrict our
x\Vexq attention to the casg= 0, i.e. only the identities (and possi-
bly the data) of the active users are unknown at the receiver
whereX; is a random set. end. It is worth noticing that in the above discussion it has
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been assumed that the reference user may be itself active Bhus, the estimate dX; is performed by minimizing, over

not: the situation that user "0” is active with probabilityey
so that the other users represent intermittent interfereran
be easily accounted for by modifying (1) as

yi=s(x”)+ s(x") + 7
xVex;

()

where now the random seX; varies in the spac§& =
{1,....,K—=1} or S ={1,...,K — 1} x {£1} whether only
user identities, or user identities and data are to be detect

At the basis of RST is the conceptioglief functionof a
random seX. This is defined as

Bx(C) £P(X CC)

where C is a subset of an ordinary multiuser state space:

C C S. Thedensityof the belief function is defined as

X, the function
M(Xt) £ [lyt — 0(Xe) || — &(X)

wheree(X;) £ NoIn f(X¢ | y11-1). The first term is the Eu-
clidean distance between the observation and the sum of the
interfering signals. This alone would be used in ML detec-
tion. The second term in the RHS of the above can be viewed
as a correction term, coming from the uppermost step of it-
erations, and reflecting the influence &q of its past his-
tory. This plays the role of a priori information to be used
in maximum a posteriori decisions, and its consideratiah an
evaluation is the main point of this paper.

2. EXAMPLE OF APPLICATION: DETECTION OF
ACTIVE USERS

its “set derivative” (this is a generalized Radon-NikodymASSume now the specific situation of a DS-CDMA system
derivative). Set derivatives can be computed by using an RS¥ith signature sequences of lengthand additive white

“toolbox,” and the resulting densities carry, from a preati

Gaussian noise. At discrete timgwe may write, for the

viewpoint, the relevant properties of standard densitcfun Sufficient statistics of the received signal,

tions of probability theory [3].

The ingredients necessary for application of RST to mul-

tiuser detection are the following:

O The belief densityf (y; | Xt). This follows from the
channel model and the measuring method.

O The belief densityf (X; | X;-1). This follows from the

vt = RAb(Xt) + 2, t=1,...,T (6)
whereX; is now the random set of all active useRs,is the

L x L correlation matrix of the signature sequences (assumed
to have unit norm)A is the diagonal matrix of the users’

signal amplitudes, the vectdr (X;) has nonzero entries in

model of the dynamics of the set of active users. Thgpe |ocations corresponding to the active-user identiies
main assumption here is théK,};> ;, forms a random gcyiped by the components &k, andz; ~ N(0, (No/2)R) is

set sequence with the Markov property, i.e., such Xat
depends on its past only througf_1.

the noise vector, wittNy/2 the power spectral density of the
received noise.

Once the above densities are made available, they are used in Throughout this paper we assume that the only unknown

the Bayesian filter recursions

f(Xt [y1t-1)
= /f(Xt | Xi—1) f(Xio1 | y11-1) 0Xem1 (3)

(Xt | y1t)
O fye | Xe) F(Xt | yre-1)

which allow one to generate recursively the estimateXof
for example in the form

X; = arg maxf (Xt | y1t)
t

signal quantities may be the identities of the users and thei
data. Specifically, we may distinguish four cases in our con-
text:

O Static channel, unknown identities, known dathis cor-
responds to a training phase intended at identifying users,
and assumes that the user identities do not change during
transmission. In this case we wri¥in lieu of X;.

O Static channel, unknown identities, unknown dakhis
may correspond to a tracking phase followingabove.

We write againX in lieu of X, and assume th& con-
tains the whole transmitted data sequence.

O Dynamic channel, unknown identities, known dathis
corresponds to identification of users preliminary to data

The integral in (3) is a “set integral,” the inverse of the set
derivative.

With our channel model, the receiver detects only a suV
perposition of interfering signals. Thus, the random set de

detection (which, for example, may be based on decorre-
lation).

Dynamic channel, unknown identities, unknown data.
This corresponds to simultaneous user identification and

scribing the receiver, denoteg, has conditional density

function
f(yt | Xt) = f2(yt — 0(Xy)) (4)

wheref,(-) is the density function of the additive noise, and

o(Xy) 2 ! (5)

_ s(xt’)
x§')exl

Assuming the noise to be Gaussian, we have

oyt — 0(X1)) O exp{ ||yt — 0(X)[|?/No}

data detection in a time-varying environment.
If we assume that, at every discrete time instant, only one
binary antipodal symbol is transmitted, trained acqusiti
corresponds to the transmission of known bit streams, and
hence toS = {0,...,K — 1}, while in untrained acquisition
user identification and data detection should be performed
jointly, which corresponds t§ = {0,...,K — 1} x {£1}.

Consider now the construction of a dynamic model for
X¢. We assume that froiin— 1 tot some new users become
active and some old users become inactive. We write

Xi =St UN; )
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whereS; is the set okurvivingusers still active fromt — 1, 3. RESULTS

and N is the set ofnew users becoming active &t The o . .
conditionX;_; N N; = 0 is forced, i.e., a user ceasing trans- We firstillustrate the advantages of joint channel sensmy a

mission at time — 1 cannot re-enter the set of active users at/Ser demodulation by considering the case of a static CDMA

timet. channel with 7 users and processing gain 7; it is further as-
For the sake of clarity, here we limit ourselves to theSumed that user “1" is active with probability one, while the

construction of a dynamic model fa¢; with trained acqui- other users may be active or not, the number of active inter-

sition. Suppose that there aneactive users at — 1, with ferers being a uniform discrete random variable. Fig. 1 show
' ' the bit error probability of a random-set-based detector. F

1 n .
Xi1= {Xt(—>l7""xt(—)l}' Then we may write, for the set of ¢omparison purposes, we also show the performance of a
surviving users, classical ML receiver assuming that all of the users are ac-
N 0 tive, and the single-user bound: for all receivers, theapre
St = U X (8) ing codes aren—sequences. The plots show that joint chan-

_ =0 nel sensing and data demodulation prevents the performance
WhereXt(') denotes either an empty set (a user has becom’gnpairment incurred by traditional multiuser systems unde
inactive) or the singletor{xt(')}. Let u denote the “persis- unknown channel occupancy.
tence” probability, i.e., the probability that a user suesd
fromt— 1 tot. We obtain, for the conditional density 8f 1’
given thatX; 1 = B:

fax, o (C|B)=pC(L-wB-° ccB (9

Static Channel, K=7, L=7, T=1; reference user is active w.p. 1

=9~ Random Sets—based ML-MUD
-©- Standard ML-MUD
=— SU bound

while it is O otherwise

For new users, we assume again a binomial birth proces:
with parameterr. SinceK is the maximum user number, we
have:

faejx, 4 (C|B) =al®l(1—a)*-I°-Bl .cnB =0 (10)

Finally, assuming that births and deaths of users are cot
ditionally independent giveiX;_1, the generalized convo-
lution operation ruling the pdf of the union of independent
random sets [1] becomes, under our assumptions:

Bit error probability of reference user

10°F

10"

th\Xl,l(C | B) (11) ° ! z ¢ ! Eb/Ni[dB] e ! s s 1
= Z fSt‘Xt,]_(W | B) th‘X[,]_(C\W | B) . . - :
wcCc Figure 1:Bit error probability of the reference user in a mul-
= fgx,(CNB)fyx,,(C\ (CNB)) (12) Zﬂlst;r asystem witl3 users, independently active with proba-
Untrained acqyisition can_be .dealt with similarlyz prO\dde
that the condlglonal densities in (9)-(10) are mu!tlphqdeb Fig. 2 compares again “classic’ ML multiuser detec-
factor depending oftC| to account for the data priors. tion [4], which assumes that all users are simultaneously

Two alternative strategies can at this point be conceive ctive, and ML detection based on RST, which detects si-
to estimateX, whether trained or untrained situations aremtaneously the number of active users and the data of the
considered. The former one relies upon implementing thesference user. The ordinate shows the bit error probabil-
Bayes recursions outlined above, thus defining a causal sgf; of the reference user in a system with 3 users transmit-
sequence estimator. An alternative approach could be to COfing binary antipodal signals, different active-user gl

sider the likelihood of the set sequenxe, ..., X, i.e.: ities (@ = 0.1, 05, and 1), spreading sequences consisting
f(Xa,..., X7 | yi7) (13)  of Kasami sequences with length 15, and perfect power con-
- trr?l (antlj hence equal rt(ajcelved p(r)]wers flrom all gsers&].| Tk;e
_ channel is Gaussian and static. The single-user bounddis als
0 f(yar | Xl""’XT)f(Xl>t|1f(Xt | Xe-1) shown as a reference. This figure was commented upon in
Section 1.

where the Markov nature of the model has been expldited We next consider the situation of a dynamic channel

Since under both trained and untrained acquisition the unyhere both the user identities and their data are to be esti-

known sets may take on a finite number of configuramated. In this new situation no user is active with probabil-

tions, maximizing (13) simply amounts to determining aity one, and the common persistence probability is- 0.8,

maximum-metric path in a trellis of depllt the state space while a = 0.2. We also assume a frameBf= 10 signaling

has cardinality % for trained acquisition, and*3for un- intervals, and we consider the following situations: aj-Est

trained acquisition, and the maximization can be underntakemation of the seX1, under both noncausal (“Viterbi”) and

in both cases through a Viterbi algorithm. causal (“Bayes”) strategies; b) Estimation of theXeg, un-
Lmplicit in the above is the need of assigning a dengitiK.), which der both non-causal and causal strategies. The quantity on

obviously depends on the prior information as to the chastetk at the ~ the vertical axis is the “bit sequence probability,” i.enet
beginning of the transmission. probability that at somethe estimated and the true bit stream
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equations that describe the evolution of the multiuseradete
tor in a dynamic environment, and evaluated its performance
also in comparison to a more traditional set-sequence astim
tor.

Our results show how joint channel sensing and user de-
modulation can be advantageous whenever the number of ac-
tive users is unknown a priori. In addition, dynamic model-
ing of users’ activity can provide further benefits. ThusJRS
appears as a most promising tool to achieve fully adaptive
receivers.

Bit error probability of reference user
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APPENDIX

07, L L L L m > ” This appendix describes, mostly in a qualitative fashiba, t
E/N, 8] fundamentals of Random-Set Theory. For a rigorous ap-
proach and for additional details, see [1-3, 5].
Figure 3: Dynamic Channel. A finite random sets a mappingX : Q — F(S) from
the sample spac@ to the collection of closed sets of the
spaceS, with | X(w)| < « for all w € Q. Here the spacg
(transmitted by the active users, whose identities arerim tu Of finite random sets is assumed to be lybrid spaceS =
unknown) do not coincide. Notice that the causality conRY x U, the direct product of the-dimensional Euclidean
straint has some perceivable, yet minor, effect at epecth, spaceRd and a finite discrete spaté. The elements of
while at timet = 10 the two algorithms yield equivalent per- characterize the users’ parameters, which we categorize as
formances, as they should. Additionally, some theoreticatontinuous ¢ real numbers) and discrete (for example, the
developments, not shown here for want of space, show thaisers’ signatures and their information data). An element
trained and untrained systems achieve close performancess is the pair(v,u), v a d-dimensional real vector, and

under a dynamic scenario. uecU. The spacs is endowed with a topology obtained as
the product of the Euclidean topologyRf and the discrete
4. CONCLUSIONS topology inU.

Thebelief functionof a finite random seX is defined as
We have described a technique for estimating the received-

signal parameters in a CDMA system. Since the number of Bx(C)£P(X CC) (14)
active interferers is itself a random variable, the set of pa

rameters to be estimated has a random number of randowhereC is a closed subset &. The belief function char-
elements. We have used a probability theory, called randonacterizes the probability distribution of a random finité se
set theory, to develop multiuser detection tools underehesX, and allows the construction of a density function2f
conditions. In addition, we have developed Bayes-filteringhrough the definition of aet integraland aset derivative
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Let C(S) denote the collection of closed subset§oThe
set derivative of a set functiof : C(S) — [0,) at a point
x € Sis defined as

oF F(SUA) —F(S)

.
i A ——y

wherem(-) denotes the hybrid Lebesgue measure, i.e. the

product of the ordinary measure Rf and of the counting
measure. Thus, the belief density of the randomX&ds

given by
_ 9Bx
fx(X) = W(0)) (15)
Let f denote a function defined by
oF
f(X) = 5 (0)

The set integral of over the closed subs8tC S is given by
/ (X)X = (16)
s
f({tz)})+k21%!/s']k F({x1,..., i} )d(x) - (i)

wheref ({x1,...,xx}) =0 if x1,...,xx are not distinct (and
hence the set has less thaelements). Since we are dealing
with finite random sets, the summation above contains only
a finite number of terms.

The special casd = 0 (which corresponds to makir§
a discrete finite set) reduces the set integral to

1
¥ 5> f({x1,....xx}) (17)
1™ {xl¢x2...,#Xk}gg<

M s

F({0}) +

k

since in this case the hybrid Lebesgue measure reduces to the
counting measure, and the Lebesgue integrals in (16) become
summations.

Set derivatives and set integrals turn out to be the inverse
of each other. The following generalized fundamental theo-
rem of calculus holds:

oF

f(X) = 5

(0) — F(S) = /S FX)8(X)  (18)

By using the above result, belief functions and belief densi
ties can be derived from one another.



