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ABSTRACT

Adaptive Projected Subgradient Method (APS3d)ves as a uni-
fied guiding principle of various set-theoretic adaptiveefihg al-
gorithms including NLMS/APA. APSM asymptotically minings
a sequence of non-negative convex functions in a real-Hitipace.
On the other hand, the exponentially weighted stepsizesgtion
(ESP) algorithm has been reported to converge faster thanii\P
the acoustic echo cancellation (AEC) problem.

In this paper, we first clarify that ESP is derived by APSM in
a real Hilbert space with special inner productThis gives us an
interesting interpretation that ESP is based on iteratiegeptions
onto the same convex sets as APA witlspecial metric We can
thus expect that a proper choice of metric will lead to imgroent
of convergence speed. We then propose an efficient adaptive
gorithm named adaptive quadratic-metric parallel sukigracpro-
jection (AQ-PSP). Numerical examples demonstrate thatPSp
with a very simple metric achieves even better echo cargeliil-
ity than ESP, proportionate NLMS, and Euclidean-metrisicr of
AQ-PSP, while keeping low computational complexity.

1. INTRODUCTION

Acoustic echo cancellation (AEC) is a key to design a hanels-f
system such as teleconferencing and car phone [1,2]. A bas
scheme of AEC is illustrated below.

Uk Trans.
b D] W Room
Rec. 0 % [Q/@sidual
Room Ng— d¢ = &(h) Echo

Figure 1: Acoustic echo canceling scheme.

Let k € N be the time index, wher® denotes the set of all non-
negative integers. With a sequence of input sigrfai$ken C R,
let (Uk)ken C RN be a sequence of input vectors definedias=
[Ug,Uk_1, - ,Ue_n+1]T- HereR denotes the set of all real num-
bers,N € N* := N\{0} the filter length, and the superscriptthe
transposition. For € N*, defineUy := [uk,Ux_1, - ,Uk_rs1] €
RNXT (usually r « N). Also define the noise vectony :=
M, Nk_1, s Mrs1]T € RY, Yk € N, with (n)ken being a se-
guence of additive noise process. With the echo impulseorssp
h* € RN, we introduce the following linear model for the data pro-
cess(dy)keny C R": di := Ulh* + ng. The goal of the echo cancel-
lation is to remove the echo paﬁt{ h* from dy by subtracting the
output of adaptive (linear) filtem, € RN, k € N, asdy — U hy. If

systemh* by using input-output relations), which is also called the
adaptive filtering.

In 2003, a unified method to derive a variety of adaptive filigr
algorithms has been proposed, which is cabe@ptive projected
subgradient method (APSNB, 4]. APSM is successfully extended
in [5, 6], and it has been proved to be a promising method tveler
excellent algorithms for applications to the stereo echwelation
[7], blind multiple access interference suppression in CIBVIA
systems [8, 9], and robust adaptive beamforming [10, 11lpros.
The classical normalized least mean square (NLMS) algarahd
the affine projection algorithm (APA) [1] are derived by APSM
from the cost functions of distances to a certain hyperpkame a
certain linear variety, respectively (their constrainemsions are
also derived in simple ways [3,4]). A more efficient adaptale

&orithm, named adaptive parallel subgradient projectamaptive

PSP) [12], is derived from the cost function of a convex corabi

tion of distances to multiple half-spaces. All algorithrhatthave so

far been shown to be derived by APSM are associated with the Eu

clidean (or standard) metric defined by the (standard) iprastuct

(a,b) = aTbfor anya,b € RN. In the AEC problem, itis known that

the room impulse responses decay exponentially on avelbaged

on which the exponentially weighted stepsize projectioBREal-

gorithm has been proposed and reported to be more effebtve t
PA [13,14]. This special structure encourages us to erpkor
ore reasonable metric for AEC.

The contribution of this paper is twofold. We first clarifyath
ESP can be derived by APSM from a cost function similar to APA
but with a different metric. We then propose a fast echo dance
ing algorithm, named adaptive quadratic-metric parallbbsadient
projection (AQ-PSP), which is based on the adaptive PShigeé
with an effective metric. The proposed algorithm enjoysusibess
against noise an®(N) computational complexity (see Remark 1).
Numerical examples demonstrate that the proposed algostk
hibits better echo cancellation performance than ESPgptiopate
NLMS [15, 16], and adaptive PSP with the Euclidean metric.

2. EXTENDED ADAPTIVE PROJECTED SUBGRADIENT
METHOD

Throughout the paper, the following notation is used. A Hildert
spaces equipped with an inner produgt, -) will be denoted by
(,(-,-)). Its induced norm is given byx|| := (x,x)%/?, ¥x € .
Finite dimensional Hilbert spaces suchB¥ (N € N*) are also
called Euclidean spaces, which are often the stages inwedd-
applications.

A setC C 7 is said to beonvexf vx+ (1—v)y e C, Vx,yeC,
Vv € (0,1). Afunction®: # — R is said to beconvexf O(vx+
(1-v)y) <VvO(X)+ (1—Vv)O(y), Vx,y € #,Vv € (0,1).

Given a mappingdl : % — ¢, the fixed point set oT is de-
noted and defined as Rik) :={y € 57 : T(y) =y}. AmappingT is
said to benonexpansivé ||T(x) — T(y)|| < ||x—V], Vx,y € 7. If,
in addition, FiXT) # 0 and there existg > 0 s.t.n [|x— T (x)||?> <

he ~ h*, the echo is successfully canceled, thus the problem can biex— f||2 — ||T(x) — f||%, ¥x € #, Vf € Fix(T), thenT is said to

interpreted as the system identification (i.e., identifyusknown

This work was supported in part by JSPS Grants-in-Aid (10344

be strongly or n-attracting nonexpansive The identity mapping
| : # — I, X— X, can be considered as gnattracting nonex-
pansive mapping for an arbitrary > 0 with Fix(l) = #. Given
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a nonempty closed convex $BtC J#, the mapping that assigns
every point inJ# to its unique nearest point i@ is calledmetric
projectionontoC and is denoted b¥-. Mathematically, one can
stateRc : /7 — C, x+— Pc(X) € arginfec ||x—Y||. R has the fol-
lowing properties: Fikc) = C; Pc is 1-attracting nonexpansive;
I~ Pe(x)[| = d(x,C) = infyec [x— yl|, ¥x € 7.

Given a continuous convex functid : 7 — R, the subdif-
ferential of © at anyy € 7, the set of all thesubgradientsof
@ aty; 90(y) := {a€ 4 : (x—y,a) +Oly) < O(x),vx € A},
is nonempty. Le®y : /¥ — [0,»), k € N, be a continuous con-
vex function andd®(y) the subdifferential o®y aty. Also let
T : # — 5 denote am-attracting nonexpansive mapping. The
following scheme, an extension of the scheme in [3, 4], plesi
a vector sequence that minimizes asymptotically the sexgueh
functions(O)ken over FiXT).

Scheme 1 (Extended Adaptive Projected Subgradient Metf®d
6]) For an arbitrary given ly € 27, generate a sequencby)ken C
by

T(he— A2 g
Moo e <k Ky gz k() )
Kl if ) (hy) # 0,

T (hy), otherwise,

WhereG);((hk) € 06k(hy), Ak € [0,2], Yk € N, andOis the zero vec-
tor. The sequencghy ke €njoys great features; monotone approx-
imation, asymptotic optimality, and strong convergenaee (8p-
pendix A).

ReplacingT with a metric projection operator, Scheme 1 is re-

duced to the original APSM [3, 4].

whereA € [0, 2] ande is the error (or residual) functioeg : 77 —
R", h— UT h—dy. The equivalence of (1) to the ESP algorithm [14]
is straightforward (see also [12, Appendix B]).

Consider here the real Hilbert spag#’, (-,-),-1). Givenr €

N*, define a sequence of data-dependent linear varigigg-n as
Vi = {hej&”:a((h) :u;h—dkzo}, vk e N,

L o _ (A

et O(h) == dy 1 (h Vi) = th RY (h)HAf
h—RA " (h)
e h) = —4—F~—+—

dp-1(h, W)

O (h) andK := 7" to Scheme 1 yields

.- Then,d00(h) >
 if hye & Vi, Oy (h) = 0, otherwise. Applying

he+A RA (h) —hi) , if he ¢\
hi k k(\/k (hi) k),l k & Vi,

+1 i
hy, otherwise

The equivalence of (2) to (1) is proved by the following olsgion.

@)

Observation 1 Given any positive definite matrix &0,

(G
Ri

'(h) = h+GU(ULGUW) Ta(h), Yhe 7. (3)
Proof: See Appendix B.

The above argument verifies that the ESP algorithm [13] is de-
rived by APSM with the metria,-. while it has been shown in
[3, 4] that the APA algorithm [1] is derived with the Euclidemet-
ric di. This interpretation implies that ESP as well as APA is en-
dowed with great features of APSM (see Appendix A). Indeed, i

In the following, to specify an inner product and its induced has been reported that ESP converges faster than APA [18. It

norm, we respectively uséa b)g := a'Gb, Va,b ¢ »#, and
lallg == v/(aa)g, Yae #, whereG € RN*N is a positive defi-

thus expected that,-1 is an effective metric and that a more ef-
ficient algorithm can be derived from a different sequenceast
functions (©)ken With this kind of metric based on the exponen-

nite matrix (which is denoted & - 0). In the real Hilbert space tially decaying structure of room impulse responses. Weene
(,(-,)g), the distance between arbitrary two elements is giveryp, efficient AEC algorithm based on parallel subgradienjetmn

by ds(a,b) := |ja—b||g, Va,b € . Similarly, the distance be-

tween an arbitrary elemerte # and a closed convex s€tis

given bydg(a,C) := infpec ||a— bl g, and the projection dfi € J#

ontoC is given asPéGJ (h) := arginfy,ec dg(a,b).

3. EFFECTIVE METRIC FOR ACOUSTIC ECHO
CANCELLATION

In this section, we present an effective metric for the AEGbpEm.
Following the derivation of the ESP algorithm [13, 14] by ARS
we propose an efficient AEC algorithm derived also by APSM
Hereafter we lep# := RN,

3.1 A Novel Interpretation of ESP Algorithm

In [13, 14], it has experimentally been shown that room irspul
responses and its variations decay by the same exponedial r

on averagk (The ratio can be measured in advance, since it isto

not variable under fixed acoustic conditions of a room; esige,
absorption coefficient etc.) This motivates us to give stepss
proportional to the expected mismatch levels, to filter fioiehts.
Aiming at exponentially decaying step sizes, define [13, 14]

(RNXN S)A: diaqalvazf" 7aN) > Oa

wherea; := apy'~! with a positive constantR >)ag > 0 and the
exponential ratigy € (0,1) (NOTE: ag is of no importance because
it will be canceled out in the algorithm). Then, the ESP altton

is given by (superscript t: the Moore-Penrose pseudoiajag])

M1 := i+ AAUK(UFAU) Te(hy), Yk € N, @)

1This fact is also verified theoretically in [17].

with an effective metric below.

3.2 Proposed Echo Canceling Algorithm

Consider now the real Hilbert spa¢e?’, (-, )-1), whereG - 0 is
an appropriate positive definite matrix suchfasr

(RNXN B)BZZ |:IO VN(?ZI :| = 0. (4)

.Herel € RN/2xN/2 and0 e RN/2xN/2 denote the identity and zero

matrices, respectively, ande (0,1) is introduced in Sec. 3.1.1 (
andO will be used for any size of matrix.) The matiixis defined
based on essentially the same ideadAabut is much simpler and
requires fewer arithmetic operations in the algorithm (Reenark

It is easy to see that the true echo impulse respbhselongs
Vi o= ih € # 1 e(h)=Ulh—dg=n}, Yk € N, henceh* is
most likely out ofVj in noisy environments. This unfortunately
causes sensitivity, to noise, of APA-based algorithmauidicig ESP
(For details, see [12]). We thus introduce the followingchizstic
property set (closed convex set)

Celp) = {he 7 : g(h) := la(h)|2— p <O}, ke 7,

where p > 0 determines the membership probability thwte
Ck(p). Note thatp should be designed by taking into account the
noise information [12, Ex. 1]. The direct projection oi@g(p) re-
quires high computational cost in general, thus we intredut ap-
proximation of the projection; i.e., projection onto thestd half-
spaceH () = {x€ 2 : (x—h,Ogk(h))g + + Gk(h) < O} S Cy(p),
whose boundary hyperplane separates the current estipaied
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Ck(p) if hy & Cy(p). Note thatdgx(h) = {TOgk(h)} in this (differen-
tiable) case. We stress now that we are consideing (-, -)g-1).

The projection ontdH, (h) has the following simple closed-form
expression:

(G )=
PH,;(h)(h) - {
h,

It is easy to verify, from the definition of subdifferentiadse(e
Sec. 2), thaflgy(h) = 2GUyex(h). We remark [12] thaPL'G(h] (h) 2

gk(h)

9V g, (h),
1DgmZs %

ifhg H (h),

otherwise

Jé

_1 _1
PékG(p)](h); andﬂf(h)](h) requires onlyO(N) complexity.
k
Given g € N, define the control sequence# =
{i ,iék)}, Yk € N.  The control sequence indicates

the closed half-spaces to be processed at timeAlso define a
weight to each half-space aékJ (0,1],1 € H, ke N, satisfying

Sied Wfk) = 1. We define a sequence of cost functi¢@x)ken
as,vk e N,
K _ -
2 widgafhe Hy (hldga[h,Hy (],
O(h):={ % (K) _
if Ly = Yiesa W deflihka H, (he)] # 0,

0, otherwise
Note that, by the factad-1 [hy, H, , a large weight is given to
the set that is 'far’ fI’OF#Ik in the sense of the metrit;-1. Also

note thatdg-1[h, H;™ (hy)] —Hh P(G J H . For the function

f(h) :=dg-1[h,H,;” (hy)], Yhe 77, We have
(e
af(h)> f'(h) = P , it hg H (hy),
()3 0= dgalnH (o)
0, otherwise.

We denote the early and tale parts of any vertor#’ asx e €

RN/2 andx, € RN/2, respectively; i.e.x=: [x(Te)x(T]i . We then
introduce the following two constraint sets that respetyivestrict

the energy of early and tale partstgf
2
S Ee} 3
G1

h
Ke::{ L}?”H{ (Oe)
2
S&}-
Gt

h 0
Ki:= (e)}ef%”:m
t Hhiti hey

Hereege, & > 0 should be designed based on an estimatzyaind
the exponential ratig. Focusing only on the early pakKe is, with
the Euclidean metric, an ellipsoid that has a large radiwiaxis

hie)
hi

corresponding to a large component of the echo impulse nsgpo

h*. However, with the metrids-1, Ke is a sphere with its radius

\/€e. Moreover Ke has no constraint on the tale part. Thanks to this;

simple structure, the projection ori@ is simply given as follows:

Ve
Yh= |:h(e) :| ceH P(Gil](h) — C{(h) (© ) if h g Ke,
he) P Ke he)
h, otherwise

where a(h) := ii[hT 0"]T||g-1. The projection ontcK; can be
computed in a 5|milar way. Application of Scheme 1 @&

with T := Pl((fil)Pl((‘ , which is a J2-attracting mapping with
Fix(T) = KeNK¢ [5, 6], derives the proposed algorithm as below.

Algorithm 1 [Adaptive Quadratic-Metric Parallel Subgradient
Projection (AQ-PSP) Algorithm] For an arbitrary initial vec-

tor hg € ¢, generate a sequence of adaptive filtering vectors
(N ken C I as

G (g1t
hyr = Pi((e )Pi((t ) {hk+)‘k~//k|:

z (k]PLG(h)(hk)hk:| }a

l€'7k

vk € N, where € [0,2] is the step size and

ZW, HP hk th
w 27— it H; (hy)
M WHp(© h e s
‘ezk 1 TH (h ) Kk ot
1, otherwise.

Algorithm 1 is endowed with great features of APSM (see Aglren
A). A remark on complexity of Algorithm 1 is given below.

Remark 1 (Overall complexity of Algorithm 1) In the update equa-
tion of Algorithm 1, each projection in the summation can bme
puted independently, thus the algorithm has the inhergratallel
structure. In fact, the algorithm not only can be implemenigth
parallel processors but also has a fault tolerance nature;, ia trou-
ble in one or some processors does not seriously affect thelbv
performance of the algorithm (which is not true for the otheajor
adaptive algorithms).

For G = B, with g concurrent processors, the order of the
number of multiplications imposed on each processor at éach
eration is approximately(2r + 4)N [19], which is the same as
the adaptive PSP algorithm with the Euclidean meffi2]. The
key to reduce the complexity is the following property:Ba =

aly e + VV/%af 3y, Va = [a], o) aly|T € . This implies that
Algorithm 1 can significantly raise, by increasing q, comesrce
speed while keeping low time consumption, which is veryitapb
for real-time applications including AEC.

4. NUMERICAL EXAMPLES

To verify the efficacy of the proposed AQ-PSP algorithm, simu
lations are performed with an English-native-male’s shesignal
recorded at sampling rate 8 kHz (see Fig. 2). To consider synoi
situation with a model mismatch, we usec R4%96 andh, ¢ R1024,

vk € N, with Signal to Noise Ratio (SNR)= 10log;o(E{Z}/
E{n2}) = 10 dB, whereg := u] h* denotespureecho.

Throughout this section|-|| stands for the Euclidean norm of
any size of vector. To measure the achievement level of eatio p
identification as well as that of echo cancellation, we eat&ihe
following two criteria: Echo Return Loss Enhancement (ERLE

[2] and system mismatch defined as 10gfh” — hy|[2/||h[|?) at

kth iteration, whereh € R1024 s a sub-vector oh* with its first
1024 components. To obtain smooth ERLE curves, after calcu-
lating ERLEmp (k) := 10logio[Z2/ (2 — g hi)?], Vk € N, we pass

it through three times a smoothing filter with length 20000r F
numerical stability against poor excitation of the speeagut sig-
nals, certain regularization and threshold are utilizedafbthe al-
gorithms.

In Fig. 3, AQ-PSP is compared with the adaptive PSP algorithm
[12] with the Euclidean metric, which will be referred toadaptive
Euclidean-metric PSP (AE-PSHor AQ-PSP and AE-PSP, we use
the common setting; = 1, g = 8,16, p = p3(= 0) (p3: the peak
value of the probability density function of the random waaie

&= |InglI? [12]), A= 0.6 andW =1/q, Yk € N. For AQ-PSP,
we simply seG = B (In this S|mulat|0n there is no mismatchyh
Moreover, to examine the pure effect of the newly introduced-
ric, we donot use the constraint se& andKt, which corresponds
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18P =1
05 rloposedc( 6)
_ 12
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3 m Proposedd = 8)
%_ 8
IS 0 % Adaptive PSP
< 4t |with Euclidean Metricq = 8, 16)
-05 0 20 40 60
0 20 40 60 Time [s]
Time [s] 0
() ignal S
a) Input signal S, -
= Adaptive PSP .
1 % Y |with Euclidean Metricq = 8, 16)
Z
S -10 :
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3 I3 W
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Time [s]
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Figure 3: Proposed versus adaptive PSP algorithm with the Eu
clidean metric; i.e.d(a,b) := di(a,b) = (a—b)T (a—b). For the
both algorithmsg = 8,16 andr = 1. SNR= 10 dB.

Time [ms]

(b) Room impulse response

Figure 2: (a) The input signal and (b) the room impulse respon
used in the simulations. Table 1: Steady state performance of AQ-PSP forg(a) 16 and

(b) g= 8, and AE-PSP for (ajj = 16 and (b)q = 8 in ERLE and
system mismatch.

Algorithm AQ-a| AQ-b | AE-a| AE-b
to assigning very large values épande;. Table 1 shows the steady ERLE 136 12.8 113 11.4
state performance of AQ-PSP and AE-PSP, which is averaged ov System Mismatchl —151 | —143 | —127 | —128
the last 18 samples (12.5 sec.).

Figure 4 draws a comparison of AQ-PSP with ESP [13] and the
Proportionate NLM3 (PNLMS) [15, 16]. For AQ-PSP, the setting
is the same as in Fig. 3 fay= 16. For ESP, we use (a)= 1,
A =05,VkeN, and (b)r =2, Ax = 0.2, Yk € N. There is no . .
mismatch iny also for ESP. For PNLMS, we s@f = 0.5,Vk € N. Scheme 1 has the following properties [5, 6].
Table 2 shows the steady state performance of AQ-PSP, ESP apgl (Monotonicity)

PNLMS. We see that the comparison in Figs. 3 and 4 is fair since
the initial convergence speed in system mismatch is alrdestical
for all curves. The results are discussed below. H hieq — (0 H < H hy — h#(K)

Appendix A: Properties of (Extended) APSM

‘,VkeN,

vh*® c Q, 1= fh e C: O (h) = infyec Ok(X)}.
5. DISCUSSION AND CONCLUDING REMARKS € Q= {heC:Ox(h) = infxec ()}

From Table 1, we see that AQ-PSP fipr= 16 gains more than 2 (b) (Asymptotic minimization) o
dB compared with AE-PSP fay = 16. From Table 2, moreover, Supposg, (hk))ken is bounded an@Ng s.t. (i) infyec Ok (X)

compared with ESP (b) and PNLMS, we see that AQ-PSEfel 6 =0,Vn> Np and (i) Q := N>, Qk # 0. Then, we have
gains more than 4 dB in ERLE and almost 3 dB in system mismatch.

We conclude that the proposed algorithm has great advantage lim O(he) =0
over the existing AEC algorithms even in highly noisy sitoas. Kesoo <0 K '

We finally remark that the proposed algorithm can be extetaled
time-varying metric (NOTE: PNLMS can be interpreted as atim
varying metric version of ESP), although the proof of selvgraat

Note thatefa used to derive Algorithm 1 in Sec. 3.2 is automat-
features of APSM must further be considered in this case.

ically bounded [4].
(c) (Strong convergence)

Under some mild conditions, the sequeribg)ken converges
2PNLM_S is_ based ona special _structure of impulse respode$P, toa pointﬁ cT.
but the weighting matrixA for ESP) is data-dependent and time-varying.
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Proposed

ERLE [dB]

System Mismatch [dB]

Time [s]

Figure 4: Proposedj(= 16, r = 1) versus ESP and Proportionate

NLMS (A = 0.5). For ESP, (ay = 1, Ax = 0.5 and (b)r = 2,
Ak =0.2. SNR=10dB.

Table 2: Steady state performance of AQ-PSPgfer 16, ESP for

(1]
(2]

[3

—_—

(4]

[5

—_

(6]

(7]

(8]

(9]

(@ r =1 and (b)r = 2, and Proportionate NLMS in ERLE and [10]

system mismatch.

Algorithm AQ | ESP-a| ESP-b| PNLMS
ERLE 136 9.5 9.5 9.5
System Mismatch] —15.1 | —110 | —120 —124
Appendix B: Proof of Observation 1
First of all, P\(,keil)(h) can be decomposed as
G! G! G
RE () =R 0~ P’\(AMGL) (h), (B.1)

k

_1
WhereMkl(G )= {he s : (hx)g-1 =0, VX € My} with My :=

{he # :U[h =0} being the translated subspaceVgf It is not
hard to see thall&/l“Gf1J = spafGu,, GUk_1, - ,GUk_r11}, and
that (see, e.g., [1éj)
(G

ii{cay)
k

Moreover, by [18, Theorem2, p. 62], we obtain

P (h) = GUk(UJ GUK)TU T hy. (B.2)

(6™
Ri

(0) = GUK(Ug GU) "d,
which, with (B.1) and (B.2), yields (3).
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