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ABSTRACT

Adaptive Projected Subgradient Method (APSM)serves as a uni-
fied guiding principle of various set-theoretic adaptive filtering al-
gorithms including NLMS/APA. APSM asymptotically minimizes
a sequence of non-negative convex functions in a real-Hilbert space.
On the other hand, the exponentially weighted stepsize projection
(ESP) algorithm has been reported to converge faster than APA in
the acoustic echo cancellation (AEC) problem.

In this paper, we first clarify that ESP is derived by APSM in
a real Hilbert space witha special inner product. This gives us an
interesting interpretation that ESP is based on iterative projections
onto the same convex sets as APA witha special metric. We can
thus expect that a proper choice of metric will lead to improvement
of convergence speed. We then propose an efficient adaptive al-
gorithm named adaptive quadratic-metric parallel subgradient pro-
jection (AQ-PSP). Numerical examples demonstrate that AQ-PSP
with a very simple metric achieves even better echo canceling abil-
ity than ESP, proportionate NLMS, and Euclidean-metric version of
AQ-PSP, while keeping low computational complexity.

1. INTRODUCTION

Acoustic echo cancellation (AEC) is a key to design a hands-free
system such as teleconferencing and car phone [1, 2]. A basic
scheme of AEC is illustrated below.
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Figure 1: Acoustic echo canceling scheme.

Let k 2 N be the time index, whereN denotes the set of all non-
negative integers. With a sequence of input signals(uk)k2N � R,
let (uk)k2N � RN be a sequence of input vectors defined asuk :=[uk;uk�1; � � � ;uk�N+1℄T . HereR denotes the set of all real num-
bers,N 2 N� := Nnf0g the filter length, and the superscriptT the
transposition. Forr 2 N� , defineUk := [uk;uk�1; � � � ;uk�r+1℄ 2RN�r (usually r � N). Also define the noise vectornk :=[nk;nk�1; � � � ;nk�r+1℄T 2 Rr , 8k 2 N, with (nk)k2N being a se-
quence of additive noise process. With the echo impulse response
h� 2 RN , we introduce the following linear model for the data pro-
cess(dk)k2N � Rr : dk :=UT

k h�+nk. The goal of the echo cancel-
lation is to remove the echo partUT

k h� from dk by subtracting the
output of adaptive (linear) filterhk 2 RN , k 2 N, asdk�UT

k hk. If
hk � h�, the echo is successfully canceled, thus the problem can be
interpreted as the system identification (i.e., identify anunknown
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systemh� by using input-output relations), which is also called the
adaptive filtering.

In 2003, a unified method to derive a variety of adaptive filtering
algorithms has been proposed, which is calledadaptive projected
subgradient method (APSM)[3, 4]. APSM is successfully extended
in [5, 6], and it has been proved to be a promising method to derive
excellent algorithms for applications to the stereo echo cancellation
[7], blind multiple access interference suppression in DS/CDMA
systems [8, 9], and robust adaptive beamforming [10, 11] problems.
The classical normalized least mean square (NLMS) algorithm and
the affine projection algorithm (APA) [1] are derived by APSM
from the cost functions of distances to a certain hyperplaneand a
certain linear variety, respectively (their constrained versions are
also derived in simple ways [3, 4]). A more efficient adaptiveal-
gorithm, named adaptive parallel subgradient projection (adaptive
PSP) [12], is derived from the cost function of a convex combina-
tion of distances to multiple half-spaces. All algorithms that have so
far been shown to be derived by APSM are associated with the Eu-
clidean (or standard) metric defined by the (standard) innerproductha;bi= aTb for anya;b2RN . In the AEC problem, it is known that
the room impulse responses decay exponentially on average,based
on which the exponentially weighted stepsize projection (ESP) al-
gorithm has been proposed and reported to be more effective than
APA [13, 14]. This special structure encourages us to explore a
more reasonable metric for AEC.

The contribution of this paper is twofold. We first clarify that
ESP can be derived by APSM from a cost function similar to APA
but with a different metric. We then propose a fast echo cancel-
ing algorithm, named adaptive quadratic-metric parallel subgradient
projection (AQ-PSP), which is based on the adaptive PSP technique
with an effective metric. The proposed algorithm enjoys robustness
against noise andO(N) computational complexity (see Remark 1).
Numerical examples demonstrate that the proposed algorithm ex-
hibits better echo cancellation performance than ESP, proportionate
NLMS [15, 16], and adaptive PSP with the Euclidean metric.

2. EXTENDED ADAPTIVE PROJECTED SUBGRADIENT
METHOD

Throughout the paper, the following notation is used. A realHilbert
spaceH equipped with an inner producth�; �i will be denoted by(H ;h�; �i). Its induced norm is given bykxk := hx;xi1=2, 8x2H .
Finite dimensional Hilbert spaces such asRN (N 2 N� ) are also
called Euclidean spaces, which are often the stages in real-world
applications.

A setC�H is said to beconvexif νx+(1�ν)y2C, 8x;y2C,8ν 2 (0;1). A function Θ :H ! R is said to beconvexif Θ(νx+(1�ν)y)� νΘ(x)+(1�ν)Θ(y), 8x;y2H , 8ν 2 (0;1).
Given a mappingT :H !H , the fixed point set ofT is de-

noted and defined as Fix(T) := fy2H : T(y)= yg. A mappingT is
said to benonexpansiveif kT(x)�T(y)k � kx�yk, 8x;y2H . If,
in addition, Fix(T) 6= /0 and there existsη > 0 s.t.η kx�T(x)k2 �kx� f k2�kT(x)� f k2, 8x 2H , 8 f 2 Fix(T), thenT is said to
be strongly or η-attracting nonexpansive. The identity mapping
I :H !H , x 7! x, can be considered as anη-attracting nonex-
pansive mapping for an arbitraryη > 0 with Fix(I) =H . Given
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a nonempty closed convex setC � H , the mapping that assigns
every point inH to its unique nearest point inC is calledmetric
projectionontoC and is denoted byPC. Mathematically, one can
statePC :H !C, x 7! PC(x) 2 arginfy2Ckx� yk. PC has the fol-
lowing properties: Fix(PC) = C; PC is 1-attracting nonexpansive;kx�PC(x)k= d(x;C) := infy2Ckx�yk, 8x2H .

Given a continuous convex functionΘ :H ! R, the subdif-
ferential of Θ at any y 2 H , the set of all thesubgradientsof
Θ at y; ∂Θ(y) := fa 2 H : hx� y;ai+ Θ(y) � Θ(x);8x 2 H g,
is nonempty. LetΘk :H ! [0;∞), k 2 N, be a continuous con-
vex function and∂Θk(y) the subdifferential ofΘk at y. Also let
T :H !H denote anη-attracting nonexpansive mapping. The
following scheme, an extension of the scheme in [3, 4], provides
a vector sequence that minimizes asymptotically the sequence of
functions(Θk)k2N over Fix(T).
Scheme 1 (Extended Adaptive Projected Subgradient Method[5,
6]) For an arbitrary given h0 2H , generate a sequence(hk)k2N �H by

hk+1 :=8>><>>: T

�
hk�λk

Θk(hk)kΘ0
k(hk)k2

Θ0
k(hk)� ;

if Θ0
k(hk) 6= 0;

T (hk) ; otherwise,

whereΘ0
k(hk) 2 ∂Θk(hk), λk 2 [0;2℄, 8k2 N, and0 is the zero vec-

tor. The sequence(hk)k2N enjoys great features; monotone approx-
imation, asymptotic optimality, and strong convergence (see Ap-
pendix A).

ReplacingT with a metric projection operator, Scheme 1 is re-
duced to the original APSM [3, 4].

In the following, to specify an inner product and its induced
norm, we respectively useha;biG := aTGb, 8a;b 2 H , andkakG :=pha;aiG, 8a 2H , whereG 2 RN�N is a positive defi-
nite matrix (which is denoted asG� 0). In the real Hilbert space(H ;h�; �iG), the distance between arbitrary two elements is given
by dG(a;b) := ka�bkG, 8a;b 2H . Similarly, the distance be-
tween an arbitrary elementa 2 H and a closed convex setC is
given bydG(a;C) := infb2Cka�bkG, and the projection ofh2H
ontoC is given asP(G)

C (h) := arginfb2C dG(a;b).
3. EFFECTIVE METRIC FOR ACOUSTIC ECHO

CANCELLATION

In this section, we present an effective metric for the AEC problem.
Following the derivation of the ESP algorithm [13, 14] by APSM,
we propose an efficient AEC algorithm derived also by APSM.
Hereafter we letH := RN .

3.1 A Novel Interpretation of ESP Algorithm

In [13, 14], it has experimentally been shown that room impulse
responses and its variations decay by the same exponential ratio
on average1. (The ratio can be measured in advance, since it is
not variable under fixed acoustic conditions of a room; e.g.,size,
absorption coefficient etc.) This motivates us to give step sizes,
proportional to the expected mismatch levels, to filter coefficients.
Aiming at exponentially decaying step sizes, define [13, 14](RN�N 3)A := diag(α1;α2; � � � ;αN)� 0;
whereαi := α0γ i�1 with a positive constant(R 3)α0 > 0 and the
exponential ratioγ 2 (0;1) (NOTE:α0 is of no importance because
it will be canceled out in the algorithm). Then, the ESP algorithm
is given by (superscript †: the Moore-Penrose pseudoinverse [18])

hk+1 := hk+λkAUk(UT
k AUk)†ek(hk); 8k2 N; (1)

1This fact is also verified theoretically in [17].

whereλk 2 [0;2℄ andek is the error (or residual) function;ek :H !Rr , h 7!UT
k h�dk. The equivalence of (1) to the ESP algorithm [14]

is straightforward (see also [12, Appendix B]).
Consider here the real Hilbert space(H ;h�; �iA�1). Given r 2N� , define a sequence of data-dependent linear varieties(Vk)k2N as

Vk := n
h2H : ek(h) =UT

k h�dk = 0
o ; 8k2 N:

Let Θk(h) := dA�1(h;Vk) = 


h�P(A�1)
Vk

(h)



A�1

. Then,∂Θk(h) 3
Θ0

k(h) = h�P(A�1)
Vk

(h)
dA�1(h;Vk) , if hk 62Vk, Θ0

k(h) = 0, otherwise. Applying

Θk(h) andK :=H to Scheme 1 yields

hk+1 =(
hk+λk

�
P(A�1)

Vk
(hk)�hk

� ; if hk 62Vk;
hk; otherwise: (2)

The equivalence of (2) to (1) is proved by the following observation.

Observation 1 Given any positive definite matrix G� 0,

P(G�1)
Vk

(h) = h+GUk(UT
k GUk)†ek(h); 8h2H : (3)

Proof: See Appendix B.
The above argument verifies that the ESP algorithm [13] is de-

rived by APSM with the metricdA�1 while it has been shown in
[3, 4] that the APA algorithm [1] is derived with the Euclidean met-
ric dI . This interpretation implies that ESP as well as APA is en-
dowed with great features of APSM (see Appendix A). Indeed, it
has been reported that ESP converges faster than APA [13]. Itis
thus expected thatdA�1 is an effective metric and that a more ef-
ficient algorithm can be derived from a different sequence ofcost
functions(Θk)k2N with this kind of metric based on the exponen-
tially decaying structure of room impulse responses. We present
an efficient AEC algorithm based on parallel subgradient projection
with an effective metric below.

3.2 Proposed Echo Canceling Algorithm

Consider now the real Hilbert space(H ;h�; �iG�1), whereG� 0 is
an appropriate positive definite matrix such asA or(RN�N 3)B := �

I O
O γN=2I

�� 0: (4)

HereI 2 RN=2�N=2 andO2 RN=2�N=2 denote the identity and zero
matrices, respectively, andγ 2 (0;1) is introduced in Sec. 3.1. (I
andO will be used for any size of matrix.) The matrixB is defined
based on essentially the same idea asA, but is much simpler and
requires fewer arithmetic operations in the algorithm (seeRemark
1).

It is easy to see that the true echo impulse responseh� belongs
to V�

k := �
h2H : ek(h) =UT

k h�dk = nk
	

, 8k 2 N, henceh� is
most likely out ofVk in noisy environments. This unfortunately
causes sensitivity, to noise, of APA-based algorithms including ESP
(For details, see [12]). We thus introduce the following stochastic
property set (closed convex set)

Ck(ρ) := n
h2H : gk(h) := kek(h)k2�ρ � 0

o ; 8k2H ;
where ρ � 0 determines the membership probability thath� 2
Ck(ρ). Note thatρ should be designed by taking into account the
noise information [12, Ex. 1]. The direct projection ontoCk(ρ) re-
quires high computational cost in general, thus we introduce an ap-
proximation of the projection; i.e., projection onto the closed half-
spaceH�

k (h) := fx2H : hx�h;∇gk(h)iG�1 +gk(h)� 0g�Ck(ρ),
whose boundary hyperplane separates the current estimatehk and
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Ck(ρ) if hk 62Ck(ρ). Note that∂gk(h) = f∇gk(h)g in this (differen-
tiable) case. We stress now that we are considering(H ;h�; �iG�1).
The projection ontoH�

k (h) has the following simple closed-form
expression:

P(G�1)
H�

k (h)(h) =8<:h� gk(h)k∇gk(h)k2
G�1

∇gk(h); if h 62H�
k (h);

h; otherwise:
It is easy to verify, from the definition of subdifferential (see

Sec. 2), that∇gk(h)= 2GUkek(h). We remark [12] thatP(G�1)
H�

k (h)(h)�=
P(G�1)

Ck(ρ) (h); andP(G�1)
H�

k (h)(h) requires onlyO(N) complexity.

Given q 2 N� , define the control sequenceIk :=fι(k)1 ; ι(k)2 ; � � � ; ι(k)q g, 8k 2 N. The control sequence indicates
the closed half-spaces to be processed at timek. Also define a

weight to each half-space asw(k)
ι 2 (0;1℄, ι 2Ik, k2 N, satisfying

∑ι2Ik
w(k)

ι = 1. We define a sequence of cost functions(Θk)k2N
as,8k2 N,

Θk(h) :=8>><>>: 1
Lk ∑

ι2Ik

w(k)
ι dG�1 [hk;H�

ι (hk)℄dG�1 [h;H�
ι (hk)℄;

if Lk := ∑ι2Ik
w(k)

ι dG�1[hk;H�
ι (hk)℄ 6= 0;

0; otherwise:
Note that, by the factordG�1[hk;H�

ι (hk)℄, a large weight is given to
the set that is ’far’ fromhk in the sense of the metricdG�1. Also

note thatdG�1[h;H�
ι (hk)℄ = 


h�P(G�1)

H�
ι (hk)(h)


G�1

. For the function

f (h) := dG�1[h;H�
ι (hk)℄, 8h2H , we have

∂ f (h) 3 f 0(h) =8>><>>: h�P(G�1)
H�

ι (hk)(h)
dG�1[h;H�

ι (hk)℄ ; if h 62H�
ι (hk);

0; otherwise.

We denote the early and tale parts of any vectorx2H asx(e) 2RN=2 andx(t) 2 RN=2, respectively; i.e.,x =: [xT(e)xT(t)℄T . We then
introduce the following two constraint sets that respectively restrict
the energy of early and tale parts ofhk:

Ke :=(�
h(e)
h(t) � 2H :





� h(e)
0

�



2

G�1
� εe

) ;
Kt :=(�

h(e)
h(t) � 2H :





� 0
h(t) �



2

G�1
� εt

) :
Hereεe;εt > 0 should be designed based on an estimate ofα0 and
the exponential ratioγ . Focusing only on the early part,Ke is, with
the Euclidean metric, an ellipsoid that has a large radius inan axis
corresponding to a large component of the echo impulse response
h�. However, with the metricdG�1 , Ke is a sphere with its radiusp

εe. Moreover,Ke has no constraint on the tale part. Thanks to this
simple structure, the projection ontoKe is simply given as follows:8h= �

h(e)
h(t) � 2H ; P(G�1)

Ke
(h) =8>><>>:24 p

εe

α(h)h(e)
h(t) 35 ; if h 62 Ke;

h; otherwise;
where α(h) := k[hT(e)0T ℄TkG�1 . The projection ontoKt can be
computed in a similar way. Application of Scheme 1 toΘk

with T := P(G�1)
Ke

P(G�1)
Kt

, which is a 1=2-attracting mapping with
Fix(T) = Ke\Kt [5, 6], derives the proposed algorithm as below.

Algorithm 1 [Adaptive Quadratic-Metric Parallel Subgradient
Projection (AQ-PSP) Algorithm] For an arbitrary initial vec-
tor h0 2 H , generate a sequence of adaptive filtering vectors(hk)k2N �H as

hk+1 := P(G�1)
Ke

P(G�1)
Kt

(
hk+λkMk

"
∑

ι2Ik

w(k)
ι P(G�1)

H�
ι (hk)(hk)�hk

#) ;8k2 N, whereλk 2 [0;2℄ is the step size andMk:=8>>>>><>>>>>: ∑
ι2Ik

w(k)
ι




P(G�1)
H�

ι (hk)(hk)�hk




2

G�1



 ∑
ι2Ik

w(k)
ι P(G�1)

H�
ι (hk)(hk)�hk





2

G�1

; if hk 62\
ι2Ik

H�
ι (hk);

1; otherwise.

Algorithm 1 is endowed with great features of APSM (see Appendix
A). A remark on complexity of Algorithm 1 is given below.

Remark 1 (Overall complexity of Algorithm 1) In the update equa-
tion of Algorithm 1, each projection in the summation can be com-
puted independently, thus the algorithm has the inherentlyparallel
structure. In fact, the algorithm not only can be implemented with
parallel processors but also has a fault tolerance nature; i.e., a trou-
ble in one or some processors does not seriously affect the overall
performance of the algorithm (which is not true for the othermajor
adaptive algorithms).

For G = B, with q concurrent processors, the order of the
number of multiplications imposed on each processor at eachit-
eration is approximately(2r + 4)N [19], which is the same as
the adaptive PSP algorithm with the Euclidean metric[12]. The
key to reduce the complexity is the following property: aTBa =
aT(e)a(e) + γN=2aT(t)a(t), 8a = [aT(e);aT(t)℄T 2 H . This implies that
Algorithm 1 can significantly raise, by increasing q, convergence
speed while keeping low time consumption, which is very important
for real-time applications including AEC.

4. NUMERICAL EXAMPLES

To verify the efficacy of the proposed AQ-PSP algorithm, simu-
lations are performed with an English-native-male’s speech signal
recorded at sampling rate 8 kHz (see Fig. 2). To consider a noisy
situation with a model mismatch, we useh� 2R4096 andhk2R1024,8k 2 N, with Signal to Noise Ratio (SNR) := 10log10(Efz2

kg=
Efn2

kg) = 10 dB, wherezk := uT
k h� denotespureecho.

Throughout this section,k�k stands for the Euclidean norm of
any size of vector. To measure the achievement level of echo path
identification as well as that of echo cancellation, we evaluate the
following two criteria: Echo Return Loss Enhancement (ERLE)
[2] and system mismatch defined as 10log10(kbh��hkk2=kbh�k2) at

kth iteration, wherebh� 2 R1024 is a sub-vector ofh� with its first
1024 components. To obtain smooth ERLE curves, after calcu-
lating ERLEtmp (k) := 10log10[z2

k=(zk�uT
k hk)2℄, 8k 2 N, we pass

it through three times a smoothing filter with length 20000. For
numerical stability against poor excitation of the speech input sig-
nals, certain regularization and threshold are utilized for all the al-
gorithms.

In Fig. 3, AQ-PSP is compared with the adaptive PSP algorithm
[12] with the Euclidean metric, which will be referred to asadaptive
Euclidean-metric PSP (AE-PSP). For AQ-PSP and AE-PSP, we use
the common setting;r = 1, q = 8;16, ρ = ρ3(= 0) (ρ3: the peak
value of the probability density function of the random variable

ξ := knkk2 [12]), λk = 0:6 andw(k)
ι = 1=q, 8k 2 N. For AQ-PSP,

we simply setG= B (In this simulation, there is no mismatch inγ).
Moreover, to examine the pure effect of the newly introducedmet-
ric, we donot use the constraint setsKe andKt, which corresponds
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Figure 2: (a) The input signal and (b) the room impulse response
used in the simulations.

to assigning very large values toεe andεt. Table 1 shows the steady
state performance of AQ-PSP and AE-PSP, which is averaged over
the last 105 samples (12.5 sec.).

Figure 4 draws a comparison of AQ-PSP with ESP [13] and the
Proportionate NLMS2 (PNLMS) [15, 16]. For AQ-PSP, the setting
is the same as in Fig. 3 forq = 16. For ESP, we use (a)r = 1,
λk = 0:5, 8k 2 N, and (b)r = 2, λk = 0:2, 8k 2 N. There is no
mismatch inγ also for ESP. For PNLMS, we setλk = 0:5, 8k2 N.
Table 2 shows the steady state performance of AQ-PSP, ESP and
PNLMS. We see that the comparison in Figs. 3 and 4 is fair since
the initial convergence speed in system mismatch is almost identical
for all curves. The results are discussed below.

5. DISCUSSION AND CONCLUDING REMARKS

From Table 1, we see that AQ-PSP forq = 16 gains more than 2
dB compared with AE-PSP forq = 16. From Table 2, moreover,
compared with ESP (b) and PNLMS, we see that AQ-PSP forq= 16
gains more than 4 dB in ERLE and almost 3 dB in system mismatch.

We conclude that the proposed algorithm has great advantages
over the existing AEC algorithms even in highly noisy situations.
We finally remark that the proposed algorithm can be extendedto a
time-varying metric (NOTE: PNLMS can be interpreted as a time-
varying metric version of ESP), although the proof of several great
features of APSM must further be considered in this case.

2PNLMS is based on a special structure of impulse responses like ESP,
but the weighting matrix (A for ESP) is data-dependent and time-varying.
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Figure 3: Proposed versus adaptive PSP algorithm with the Eu-
clidean metric; i.e.,d(a;b) := dI (a;b) = (a�b)T(a�b). For the
both algorithms,q= 8;16 andr = 1. SNR= 10 dB.

Table 1: Steady state performance of AQ-PSP for (a)q = 16 and
(b) q = 8, and AE-PSP for (a)q = 16 and (b)q = 8 in ERLE and
system mismatch.

Algorithm AQ-a AQ-b AE-a AE-b
ERLE 13:6 12:8 11:3 11:4
System Mismatch �15:1 �14:3 �12:7 �12:8

Appendix A: Properties of (Extended) APSM

Scheme 1 has the following properties [5, 6].

(a) (Monotonicity)


hk+1�h�(k)


� 


hk�h�(k)


 ; 8k2 N;8h�(k) 2Ωk := fh2C : Θk(h) = infx2C Θk(x)g:
(b) (Asymptotic minimization)

Suppose(Θ0
k(hk))k2N is bounded and9N0 s.t. (i) infx2C Θk(x)= 0, 8n� N0 and (ii)Ω := Tk�N0

Ωk 6= /0. Then, we have

lim
k!∞

Θk(hk) = 0:
Note thatΘ0

k used to derive Algorithm 1 in Sec. 3.2 is automat-
ically bounded [4].

(c) (Strong convergence)
Under some mild conditions, the sequence(hk)k2N converges
to a pointbh2 T.
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Figure 4: Proposed (q = 16, r = 1) versus ESP and Proportionate
NLMS (λk = 0:5). For ESP, (a)r = 1, λk = 0:5 and (b)r = 2,
λk = 0:2. SNR= 10 dB.

Table 2: Steady state performance of AQ-PSP forq = 16, ESP for
(a) r = 1 and (b)r = 2, and Proportionate NLMS in ERLE and
system mismatch.

Algorithm AQ ESP-a ESP-b PNLMS
ERLE 13:6 9:5 9:5 9:5
System Mismatch �15:1 �11:0 �12:0 �12:4

Appendix B: Proof of Observation 1

First of all,P(G�1)
Vk

(h) can be decomposed as

P(G�1)
Vk

(h) = P(G�1)
Vk

(0)�P(G�1)
M?(G�1)

k

(h); (B.1)

whereM?(G�1)
k := fh 2H : hh;xiG�1 = 0; 8x2 Mkg with Mk :=fh2H : UT

k h = 0g being the translated subspace ofVk. It is not

hard to see thatM?(G�1)
k = spanfGuk;Guk�1; � � � ;Guk�r+1g, and

that (see, e.g., [18])

P(G�1)
M?(G�1)

k

(h) = GUk(UT
k GUk)†UT

k hk: (B.2)

Moreover, by [18, Theorem2, p. 62], we obtain

P(G�1)
Vk

(0) = GUk(UT
k GUk)†dk;

which, with (B.1) and (B.2), yields (3).
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