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ABSTRACT depends on the true SNR, which is unknown. Instead, we
Commonly used spectral amplitude estimators, such as thopgopose a general optimization method to improve spectral
proposed by Ephraim and Malah, are only optimal when thenhancement methods, using a two-stream structure, in sec-
statistical model is correct and the speech and noise gpecttion 3. The standard algorithm is run in the background, but
variances are known. In practice, the spectral variancess hathe final reconstruction is made by applyinditerent, sepa-
to be estimated. A simple analysis of the "decision-dirétte rate gain function to the noisy amplitude. This gain function
approach for speech spectral variance estimation reveils t is obtained from a training procedure and is optimized for
presence of an important bias at low SNRs. To correct foa wide range of SNRs. The method is applied to the algo-
modeling errors and estimation inaccuracies, we proposerithms of Ephraim and Malah in section 4. The results show
general optimization procedure, with two gain functions ap a significant increase in noise reduction. At the same time,
plied in parallel. The unmodified algorithm is run in the less smoothing is needed in the decision-directed estitnato
background, but for the final reconstruction a differenhgai which may result in better intelligibility. Section 5 condes
function is used, optimized for a wide range of signal-to-the paper.
noise ratios. When this technique is implemented for the
algorithms of Ephraim and Malah, a large improvement is 2. THE DECISION-DIRECTED
obtained (in the order of 2 dB Segmental SNR improvement SPECTRAL VARIANCE ESTIMATOR

and 0.3 points increase in PESQ). Moreover, less smoothinég1 MM SE (log) spectral amplitude estimation

is needed in the decision-directed spectral variance atdim
When the Short-Term Fourier coefficients are assumed to be
1. INTRODUCTION independent across time and frequency and distributed ac-

. . o cording to a complex Gaussian distribution, the MMSE am-
Single-microphone speech enhancement is important forIituole estimatoriy, for frequency birk, is given by [2]:
many applications [1]. Techniques in the Short-Time FaurieP T 9 yoirk,1s g y [2];

domain are often used, because they are fast, perform well ~ TV
and the statistical modeling in the frequency domain is sim- A= o M(=0.5;1;—vi) R, (1)
ple. Minimum Mean-Square Error (MMSE) estimators of ] . . ]
the spectral amplitudes [2] or log spectral amplitudes [3]WhereR is the noisy spectral amplitudé)(a;c;x) is the
based on the assumption of a Rayleigh distribution for th&€onfluent hypergeometric function, angis defined by
amplitudes, are commonly used, but more general distribu- &
tion assumptions have been made as well [4], and also es- Vg =
timators based on Laplace and Gamma distributions for the 1+&
real and imaginary parts of the Fourier coefficients havebeeThe a priori and a posteriori SNRs are defined by =
proposed [5]. _ M(K)/Ag(k) and y = RZ/Aq(K), respectively. Ax(k) and
Spectral speech enhancement algorithms can suffer fropy, (k) are the speech and noise spectral variances for fre-

an annoying artefact, called "musical noise”. In [2], a spec quency bink. The MMSE log spectral amplitude estimator
tral variance estimator, termed "decision-directed” @ade s [3]:

W

estimator, was proposed which reduces the musical noise o

at the expense of smoothing of speech transitions. The A= Sk exp 1 e—dt Re. )
decision-directed estimator combines the estimated ampli 1+ & 2) t

tude of the previous analysis frame with the noisy amplitude Y

of the current frame into one estimator of the spectral variBoth (1) and (2) can be written in the forfy = G(&, YR«

ance. Although it reduces the musical noise, it is heuristigyhereG is a spectral gain applied to the noisy amplitiRje

in nature, lacking a solid theoretical basis. We will inkest The speech and noise spectal variances are unknown in prac-

gate the decision-directed estimator in some detail (8ecti tice and have to be estimated. In the following, we assume

2). It will be shown that this estimator can be severely bi-that the noise spectral variance can be estimated acauratel

ased at low SNR. Correcting fully for the bias is difficult be- |t can be estimated for stationary noise during speech pause

cause of the nonlinear feedback loop and because the biggr non-stationary noise, approaches based on minimum-
The research is supported by MultimediaN and the Techndtagyda- stat!stlcs [6]'.[7] can be us.ed‘ In this paper, we consider

tion STW, applied science division of NWO and the technolpgygramme  Stationary noise only and will focus on the estimation of the

of the ministry of Economic Affairs. speech spectral variance.




2.2 Speech spectral variance estimation that an overestimation &f is more appropriate than using an
underestimate, because the gain functis less sensitive
to an overestimate of than to an underestimate. We there-
fore choose to correct for the bias for low SNR, by inserting

Ephraim and Malah [2] proposed the following decision-
directed estimator for tha priori SNR in time framen in

frequency birk: a factor 4#tinto (3):
: An-1) A2
n=o0————+(1-0a)P[kn -1 z 4 A (n-1
Ek( ) /\d(k) ( ) [yk( ) ] Ek(n) = max a_Ak( ) + (1_ a)[yk(n) _ 1]75”1'!’1 .
T Ag(K)
P[x] is the clipping function: it sets negative values to zero. (4)

The weighting coefficientr is usually chosen near one, e.g. . . .
0.98. A value near one gives the highest noise reductiore-2-2 !llustration for stationary signals

while avoiding the musical noise. However, it comes at theFigure 1 shows the effect aff when the algorithm with
expense of a reduction in intelligibility, because impatta (1) and (3) or (4) is applied to a stationary stochastic sig-
speech transitions are smoothed. Usudllyis constrained nal. The blue continuous line shows the clean spectrum, the
to be larger than a certain minimum valéig,. This helpsin green dashed line the enhanced spectrum when (3) is used,

reducing musical noise [8]. We will usgn = —19 dB. the black dash-dotted line the enhanced spectrum with (4),
and the horizontal red dotted line indicates the noise level
2.2.1 Convergence behavior The overall SNR was 10 dB. It can be seen that there is not

- . _— . . enough noise suppression for low valuesrof-or larger val-
As indicated by Martin [5], the clipping causes a bias, Wh'Chues ofa, there is a bias in the enhanced spectrum when (3) is

can be reduced by letting the clipping operator work on bOﬂhsed. This bias increases with increasingnd decreasing
terms together. The spectral variance estimator thus b

) ?)'riori SNR. The bias-corrected estimator (4) clearly leads to
COMES: much less signal distortion, although less of the noiseps su
~ 1 pressed in very low SNR regions of the spectrum. Similar
EAk(n) — max O,Ak(n_ ) +(1—a)[y(n) —1),&min| . (3)  effects happen with the log-amplitude estimator (2). Sheec
Ad(K) ’ processed with (3) sounds heavily distorteddor- 1.

However, there is a bias due to the teﬁf(n— 1)/Aq(K)

as well. The expectation of the square of a speech spectr
amplitudeAZ(n) equalsiy(k,n) by definition. Suppose the
algorithm witha = 1 is applied to astationary stochastic
signal. From (1) we can see that for small valueh),
ﬂﬁ(n) is nearly equal tdr1/4)é&(n)A4(k), since the hyperge-
ometric functionM(—0.5;1;—V) is then close to one. This
means that even Kx(k, n) were known exactly, i.eéy(n) =
Ax(k,n)/Ag(K), we would haveAZ(n) = (11/4)Ax(k.n), i.e.,

a biased estimator ofx(k,n) at low SNRs, because of the
factor /4. Note that the bias is caused byiaoonsistency
between (1) and (3): the square of an estimate of the ampl
tude is used in (3) instead of an estimate of the square. £
very high SNRsA«(n) ~ R¢(n) and there is no significant
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The fact thatAx(k,n) has to be e§timated, makes things 0 1 5 3 4 0 1 P 3 4
worse. Because of the factar/4, &(n+ 1) tends to be Frequency (kHz) Frequency (kHz)

smaller th_anEk(n). Therefore, |nA§tat|0nary signals, "flt low Figure 1: Influence ofr on enhancement result for stationary
SNR, {k will converge toémin, andAg to (71/4)&minAg, Which  siochastic signals. The blue continuous line is the cleao-sp
generally leads to too much suppression. Box 1, the  ym, the green dashed line is the average enhanced spectrum

term (1— a)[u(n) — 1] counteracts this to some extent andyhen (3) is used, the black dash-dotted line results with (4)
is therefore necessary, but it has a large variance for salugd the red dotted line is the noise level.

of a that are too small, causing musical noise and less than
optimal suppression of the noise. For— 1, theestimated
spectral amplitude will have a very low variance, much lowe
than the variance of the true spectral amplitége This ex- Tables 1 and 2 show the average Segmental SNR improve-
plains why at low SNRs, the estimatedpriori SNR is a ment (SSNR+) and scores from the latest PESQ measure [9]
highly smoothed version of theeposteriori SNR, as was ob- for the standard algorithm (EM with (1); EMlog with (2)),
served experimentally by Cappé [8]. We can conclude thafor thea priori SNR estimators (3) and/or (4). All 30 clean

o = 1is not optimal, not even for stationary signals, becaussentences of the NOIZEUS database [10] have been used, to
it generally causes too much suppression. The bias is a funesich white or car noise from the Noisex-92 [11] database,
tion of the true SNR, which is unknown. It is therefore diffi- limited to telephone bandwidth (300-3400 Hz), has been
cultto correct for it. Ephraim and Malah [2] have pointed outadded. A randomly chosen section of the noise was added to

r2.2.3 Results on speech signals



Table 1: Segmental SNR improvement (SSNR+) and PES@able 2: Segmental SNR improvement (SSNR+) and PESQ
scores on the NOIZEUS sentences for the algorithm o$cores on the NOIZEUS sentences for the algorithm of
Ephraim and Malah (EM/EMIog), with the conventioraal Ephraim and Malah (EM/EMlog), with the conventioreal
priori SNR estimator and with a bias-corrected version, agriori SNR estimator and with a bias-corrected version, as
a function ofa and overall SNR for telephone-bandwidth- a function ofa and overall SNR for telephone-bandwidth-
filtered white noise. filtered car noise.

SNR EM with (3) EM with (4) EMlog with (3) SNR EM with (3) EM with (4) EMlog with (3)
a | (@B) |[ SSNR+ ] PESQ || SSNR+ | PESQ || SSNR+ | PESQ a | (@B) |[SSNR+ ] PESQ || SSNR+ | PESQ || SSNR+ | PESQ
0.5 0 2.49 1.29 2.33 1.27 3.01 1.34 0.5 0 2.33 1.49 2.18 1.48 2.78 1.55
5 2.45 1.63 2.28 1.61 2.96 1.71 5 2.16 1.93 2.01 1.90 2.59 2.01

10 2.33 2.09 2.17 2.05 2.83 2.19 10 1.98 2.41 184 | 2.37 2.39 2.50

15 2.12 255 1.96 251 2.59 2.66 15 1.87 2.88 1.73 2.84 2.28 2.99

0.8 0 3.11 1.34 2.69 1.28 3.81 1.42 0.8 0 2.83 155 2.46 1.48 3.40 1.63
5 2.97 1.69 2.56 1.61 3.64 1.82 5 255 1.99 2.20 1.90 310 | 212

10 2.75 | 215 2.36 2.04 340 | 2.31 10 2.29 2.44 195 | 2.34 2.82 2.59

15 2.43 2.57 2.06 2.46 3.03 2.74 15 2.11 2.87 1.78 2.76 265 | 3.04

098] 0 426 1.43 3.11 1.24 4385 1.49 098] 0 3.47 1.56 2.64 1.40 3.88 1.61
5 3.66 1.82 2.66 1.57 428 1.92 5 284 | 201 2.14 1.81 3.27 2.10

10 3.01 2.20 2.17 1.97 3.62 2.31 10 233 2.43 170 | 2.24 284 | 256

15 231 255 1.66 2.36 2.83 2.69 15 195 | 2.82 1.38 2.64 245 | 3.00

every sentence at every SNR condition. The noise variangdgorithm is run in the background, but for the final recon-
Ad(K) was estimated from 0.64 seconds of noise only, precedstruction a different gain function is app!led,_wh|_ch cote
ing each speech sentence. The bias-correzfaiori SNR  for some of the modeling errors and estimation inaccuracies
estimator (4) gives somewhat lower objective performancén the spectral variance estimatond the gain function of the

than (3). There was more residual noise, mainly becﬁuse original method. The corrective gain function is optimized
of (4) does not reacin for very low SNRs. The enhanced for a wide range of SNRs by means of a training procedure
speech was also free from musical noise,do= 0.98, but  ON & Speech database, described in section 3.1.

not for the smaller values af. This suggests thamooth-

ness across time, i.e., strong correlation in the time series 3. ANIMPROVED MAPPING

of a priori SNR estimators and corresponding enhanced amrpe Ephraim-Malah suppression rules are functions of the
plitudes, rather than a low (ensemblejiance, is sufficient 5 priori and a posteriori SNRs.  This remains true for

for avoiding the musical noise. The optimal valuecotle-  non_Gaussian assumptions about the distribution of DFT-
pends on the input SNR. For the lowest SNRs, the optim&yefficients. The decision-directed estimator of #hariori

value ofa is near 0.98, while for the highest SNR it is neargnR is a function of the estimated amplitude of the previ-
0.8, according to SSNR+ and PESQ. However, there is mucls frame and the noisy amplitude of the current frame. This
more musical noise forr = 0.8, so there seems to be a dis- yeans that for spectral speech enhancement algorithms that

agreement between these objective measures and subjecii the decision-directed variance estimator, we can symbo
quality at high SNRs. ically write:

2o (An-1) Ri(n)
We can conclude sofar that the performance of the estima- Ac(n) =F ( Ad(K) 7 Ag(K) Re(n), (5)
tors (1) and (2) depends on the properties of the particular

a priori SNR estimator used. It has been shown that thghere F is a complicated nonlinear function which, of
distribution of clean sp(_aech spectral amplltudmndnpna! course, also depends @n and&yn. Our goal is to find a

on a small range of (high) values of tlestimated a priori  fynctionF which leads to better speech enhancement perfor-
SNR deviates from Gaussianity and a Laplacian, Gammanance (in terms of a suitable objective error criterion)isTh
or more general distribution model for the real and imagi4s 5 difficult problem. As a first step towards this goal, a
nary parts or the amplitudes of the Fourier coefficients Calaining procedure is used to find an improved mapping from
lead to improved speech enhancement [4] [5]. However, fofe estimated priori SNR and thea posteriori SNR to the

a different estimator of tha priori SNR based on GARCH  gnhanced amplitudes. This is implemented as a correction to
models [12], a Gaussian model leads to better results thafe conventional algorithm, using a two-stream procecage,
Gamma or _Laplamz_m models. A slight preference for com ollows: Ay of (1) or (2) will not be used for reconstruction of
plex Gaussian distributions has also been found for the DF he speech signal, but only for estimation of éhariori SNR

coefficients from short analysis frames of individual sgeec i, ye next frame. For reconstruction, we use an amplitude
sound classes (vowels, plosives, fricatives, etc.) [13]. ~

The gain function and the decision-directed variance estik: ©Ptained by multiplying the noisy amplitudig by asep-
mator are linked in a non-linear feedback loop. Changing ei@rate gain functionG(é&, i), different from the gain func-
ther one of them will affect the performance of the other. Wetion G(éy, \). In other words, the conventional algorithm
propose a general optimization method to improve speecis run in the background, forming one stream, and the final
enhancement algorithms for a wide range of SNR conditiongeconstruction is another stream. This procedure guaante
Two gain functions are applied in parallel. The unmodifiedan improvement in terms of the error criterion, because the

2.2.4 Other statistical models




first stream is left untouched, while the second-stream gai
functionG corrects for some of the modeling errors and esti-
mation inaccuracies. For each frequencyHlithe corrective

gain functionG is a function of the two parameter&, and
Yk, SO we can write:

Ax = G(&, WRk.

20 -20

Gis implemented as a look-up table: the supporf;@hnd ()
¥ is discretized in a grid. The grid points range from -19

dB to 40 dB in steps of 1 dB. Eaqtarameter cell contains  Figure 2: (a) Trained second-stream gain function (6) for
the values of¢ andy closest to the grid point and has its a = 0.8 and (b) analytical first-stream gain function [2].
corresponding value d&(¢, y) stored in a matrix.

dB (all the train data were subjected to all SNR conditions).
. Whenever a certain parameter cell was hit less thah 10
Our aim is to find the functios(&x, ) that minimizes the times in total for all noise conditions during training, the
mean-square error i or log/A,] for a wide range of SNR  gain function (1) or (2) was substituted, as a function of
conditions. We have optimized over the range -15 dB to 2%(n) andy(n), i.e.,Ax(n) would be used for reconstruction.

dB overall SNR. This covers the range of practical interest. Figure 2(a) shows the resulting functiGrof (6) for a = 0.8.
G is found by means of a training procedure. We haverigure 2(b) shows the gain function of (1) for comparison.
trained on the TIMIT-TRAIN database [14]. To the clean Particularly noticeable is that there is more suppressiidim w

signals, noise is added at the various overall SNRs. Thefhe second-stream gain functi@than with the first-stream
the Ephraim-Malah algorithm is run. In each frame, for eacl*gam functionG for small values OEA andy.

frequency bin, we haye e?k,yk) pair that falls into one of

the parameter cells(éx, %) pairs from different frequency
bins and different frames can fall into the same parameter 4, EXPERIMENTAL RESULTS

cell during the course of the training. To each of thGSew) i . ) .
pairs corresponds a clean amplitwgleand a noisy amplitude Both in training and testing we used 50%-overlapping frames

R.. Those are collected and after all the train signals ar®f 32 ms (256 samples at 8 kHz sampling frequency). The
processed, the optimal value@; for parameter cel(i, }) is data window used was a cosine-squared window, which has

. the perfect reconstruction property. For testing, we used
found by minimizing all 30 clean sentences of the NOIZEUS database [10]. Ta-

3.1 Thetraining procedure

M ble 3 shows the average Segmental SNR improvement and
z {Ai (M) — GijRyj (m)}2 PESQ [9] scores for théwo-Stream algorithm based on the
] : U MMSE amplitude estimator (TS) and MMSE log amplitude

estimator (TSlog}. The speech was contaminated by white
with respect taGij. Rij(m) is them-th noisy amplitude that noise from the Noisex database [11], limited to telephone
fell into parameter celli, j) andAij(m) the corresponding bandwidth. Results are shown for three values ddt four

clean amplitude. The optimal _is given bv: overall SNRs. For Segmental SNR computation, frame SNR
P P 92 is g y values outside the rangel0 dB to +35 dB are clipped.
Mij Mj Table 4 shows the results for contamination by telephone-
Gij = z A (MR (m)/ z RiZj(m)_ (6) bandwidth car noise, again from Noisex.
m=1 m=1 The two-stream method performs much better than the

] ) ) ) standard algorithm (compare with tables 1 and 2). Note
The corresponding expressions for the logarithmic case arenat (3) and (4) perform equally well now. Improvements in
SSNR+ are in the order of 1.5to 3 dB, and in the range of 0.2
to 0.5 points for PESQ. Also, the optimum performance is at
a lower value ofx now. This is important, since it means that
important speech transitions are less smoothed, whicHghou
result in less intelligibility reduction. The enhancedrsifs

Some combinations ({fk andy are highly unlikely and may had much less residual noise, less speech distortion, img so
not, or not often enough, have occured during the trainingmUSica| noise was introduced. The amount of musical noise
This means thaltl;; for that cell is too small to have a reliable Was almost independent af, but increased with decreasing
G . Insuch casesf\k(n) is used for reconstruction NR. PESQ scores are almost independeint a well and
1]+ b . . . _ B _
For training we used the entire TIMIT-TRAIN of the error criterion used. The MMSE log-amplitude es

; . timator resulted in more noise suppression than the MMSE
database [14], which consists of about 900,000 frame (|)”nplitude estimator. This was clearly audible.

of speech. The speech signals were bandpass filtered
telephone bandwidth (300-3400 Hz). Bandpass-filtered
computer-generated white noise was added to the train data iye ysed the same error criterion in both streams, althotighismot
at overall SNRs ranging from -15 dB to +25 dB, in steps of 5strictly necessary.

Mij _ .
1{|og[m<m>/emj<m>1}2, Gij="

m=




Table 3: Segmental SNR improvement (SSNR+) and PES@able 4: Segmental SNR improvement (SSNR+) and PESQ
scores on the NOIZEUS sentences for the Two-Stream abcores on the NOIZEUS sentences for the Two-Stream al-
gorithm (TS/TSlog) as a function af and overall SNR for gorithm (TS/TSlog) as a function @f and overall SNR for
telephone-bandwidth white noise. telephone-bandwidth car noise.

TS with (3) TS with (4) TSlog with (3) TS with (3) TS with (4) TSlog with (3)

a SNR SSNR+ | PESQ SSNR+ | PESQ SSNR+ | PESQ a SNR SSNR+ | PESQ SSNR+ | PESQ SSNR+ | PESQ
0.5 0 5.96 1.66 5.96 1.66 6.36 1.64 0.5 0 4.89 1.75 491 1.75 5.32 1.77
5 5.55 2.12 5.55 2.12 5.91 2.14 5 4.46 2.32 4.46 2.32 4.83 2.32

10 500 | 2.60 500 | 2.60 537 | 261 10 713 | 284 714 | 284 251 | 2.86

15 230 | 3.07 231 | 3.07 763 | 3.6 15 386 | 332 386 | 332 219 | 333

08 ] 0 596 | 1.69 596 | 1.69 642 | 167 08 ] 0 491 | 1.78 491 | 1.78 539 | 1.79
5 5.53 2.14 5.52 2.14 5.93 2.15 5 4.46 2.35 4.45 2.35 4.88 2.35

10 4.97 2.60 4.96 2.60 5.39 2.61 10 4.13 2.85 4.12 2.85 4.54 2.87

15 4.28 3.07 4.27 3.07 4.64 3.06 15 3.83 3.32 3.83 3.32 4.19 3.33

098] 0 585 | 1.69 582 | 1.69 653 | 167 098] 0 275 | 1.76 273 | 1.77 540 | 1.76
5 535 | 212 535 | 212 597 | 211 5 728 | 232 229 | 233 283 | 231

10 474 | 255 277 | 256 533 | 255 10 387 | 281 391 | 283 741 | 284

15 203 | 3.00 207 | 3.02 252 | 3.01 15 354 | 3.26 361 | 3.29 202 | 3.29

5. CONCLUDING REMARKS [5] R. Martin, "Statistical methods for the enhancement of

Errors in the statistical models and the estimated model p%
rameters decrease the performance of suppression rules. (1:
have located a large bias in the decision-directed approach
of spectral variance estimation, which causes serioushpee
distortion when the weight factor approaches one.

We have shown for the standard MMSE speech spectrﬂ]
amplitude and log-amplitude estimators with the decision-
directed approach for spectral variance estimation, that t
performance can be much improved by a two-stream struc-
ture. The procedure can be used to optimize for other, pef8]
ceptually more relevant error criteria, such as those in, [15
as long as frequency bins are treated independently. @ther
priori SNR estimators may also be used. Complex DFT es-

noisy speech,” pp. 43-64 in [1].

R. Martin, "Noise power spectral density estimation
based on optimal smoothing and minimum statistics,”
IEEE Trans. Speech Audio Proc., vol. 9, no. 5, pp. 504-
512, July 2001.

I. Cohen, "Noise estimation in adverse environments:
improved minima controlled recursive averagingsEE
Trans. Speech Audio Proc., vol. 11, no. 5, pp. 466-475,
Sept. 2003.

O. Cappé, "Elimination of the musical noise phe-
nomenon with the Ephraim and Malah noise suppressor,”
|EEE Trans. Speech Audio Proc., vol. 2, no. 4, pp. 345-
349, Apr. 1994.

timators can be handled easily, when the real and imaginagg] j. G. Beerends, "Extending P.862 PESQ for assessing

parts are assumed independent and identically distriljgied
The resulting optimized gain functions for the real and imag
inary parts will be the same.

In our two-stream approach, a conventional analytical
gain function and a trained corrective gain function areduse
We will investigate whether it is possible to optimize the-si
gle functionF of (5). With the parameters shown in this
equation, there might be no need for a separate spectral vari

speech intelligibility,” White contribution COM 12-C2
to ITU-T Study Group 12, October 2004 (equivalent to
TNO Information and Communication Technology re-
port 33392).

[10] NOIZEUS A noisy speech corpus for evaluation of

speech enhancement algorithms.
http://www.utdallas.edu/loizou/speech/noizeus/

ance estimator, since that would be included in the functior[wll]JA- Varga, H. J. M. Steeneken, M. Tomlinson, and D.

F automatically.
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