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ABSTRACT
Commonly used spectral amplitude estimators, such as those
proposed by Ephraim and Malah, are only optimal when the
statistical model is correct and the speech and noise spectral
variances are known. In practice, the spectral variances have
to be estimated. A simple analysis of the ”decision-directed”
approach for speech spectral variance estimation reveils the
presence of an important bias at low SNRs. To correct for
modeling errors and estimation inaccuracies, we propose a
general optimization procedure, with two gain functions ap-
plied in parallel. The unmodified algorithm is run in the
background, but for the final reconstruction a different gain
function is used, optimized for a wide range of signal-to-
noise ratios. When this technique is implemented for the
algorithms of Ephraim and Malah, a large improvement is
obtained (in the order of 2 dB Segmental SNR improvement
and 0.3 points increase in PESQ). Moreover, less smoothing
is needed in the decision-directed spectral variance estimator.

1. INTRODUCTION

Single-microphone speech enhancement is important for
many applications [1]. Techniques in the Short-Time Fourier
domain are often used, because they are fast, perform well
and the statistical modeling in the frequency domain is sim-
ple. Minimum Mean-Square Error (MMSE) estimators of
the spectral amplitudes [2] or log spectral amplitudes [3],
based on the assumption of a Rayleigh distribution for the
amplitudes, are commonly used, but more general distribu-
tion assumptions have been made as well [4], and also es-
timators based on Laplace and Gamma distributions for the
real and imaginary parts of the Fourier coefficients have been
proposed [5].

Spectral speech enhancement algorithms can suffer from
an annoying artefact, called ”musical noise”. In [2], a spec-
tral variance estimator, termed ”decision-directed” variance
estimator, was proposed which reduces the musical noise
at the expense of smoothing of speech transitions. The
decision-directed estimator combines the estimated ampli-
tude of the previous analysis frame with the noisy amplitude
of the current frame into one estimator of the spectral vari-
ance. Although it reduces the musical noise, it is heuristic
in nature, lacking a solid theoretical basis. We will investi-
gate the decision-directed estimator in some detail (Section
2). It will be shown that this estimator can be severely bi-
ased at low SNR. Correcting fully for the bias is difficult be-
cause of the nonlinear feedback loop and because the bias
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depends on the true SNR, which is unknown. Instead, we
propose a general optimization method to improve spectral
enhancement methods, using a two-stream structure, in sec-
tion 3. The standard algorithm is run in the background, but
the final reconstruction is made by applying adifferent, sepa-
rate gain function to the noisy amplitude. This gain function
is obtained from a training procedure and is optimized for
a wide range of SNRs. The method is applied to the algo-
rithms of Ephraim and Malah in section 4. The results show
a significant increase in noise reduction. At the same time,
less smoothing is needed in the decision-directed estimator,
which may result in better intelligibility. Section 5 concludes
the paper.

2. THE DECISION-DIRECTED
SPECTRAL VARIANCE ESTIMATOR

2.1 MMSE (log) spectral amplitude estimation

When the Short-Term Fourier coefficients are assumed to be
independent across time and frequency and distributed ac-
cording to a complex Gaussian distribution, the MMSE am-
plitude estimator,̂Ak, for frequency bink, is given by [2]:

Âk =

√
πvk

2γk
M(−0.5;1;−vk)Rk, (1)

whereRk is the noisy spectral amplitude,M(a;c;x) is the
confluent hypergeometric function, andvk is defined by

vk =
ξk

1+ ξk
γk.

The a priori and a posteriori SNRs are defined byξk =
λx(k)/λd(k) and γk = R2

k/λd(k), respectively. λx(k) and
λd(k) are the speech and noise spectral variances for fre-
quency bink. The MMSE log spectral amplitude estimator
is [3]:
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Both (1) and (2) can be written in the form̂Ak = G(ξk,γk)Rk,
whereG is a spectral gain applied to the noisy amplitudeRk.
The speech and noise spectal variances are unknown in prac-
tice and have to be estimated. In the following, we assume
that the noise spectral variance can be estimated accurately.
It can be estimated for stationary noise during speech pauses.
For non-stationary noise, approaches based on minimum-
statistics [6], [7] can be used. In this paper, we consider
stationary noise only and will focus on the estimation of the
speech spectral variance.



2.2 Speech spectral variance estimation

Ephraim and Malah [2] proposed the following decision-
directed estimator for thea priori SNR in time framen in
frequency bink:

ξ̂k(n) = α
Â2

k(n−1)

λd(k)
+ (1−α)P[γk(n)−1]

P[x] is the clipping function: it sets negative values to zero.
The weighting coefficientα is usually chosen near one, e.g.
0.98. A value near one gives the highest noise reduction,
while avoiding the musical noise. However, it comes at the
expense of a reduction in intelligibility, because important
speech transitions are smoothed. Usually,ξ̂k is constrained
to be larger than a certain minimum valueξmin. This helps in
reducing musical noise [8]. We will useξmin = −19 dB.

2.2.1 Convergence behavior

As indicated by Martin [5], the clipping causes a bias, which
can be reduced by letting the clipping operator work on both
terms together. The spectral variance estimator thus be-
comes:

ξ̂k(n) = max

[
α

Â2
k(n−1)

λd(k)
+ (1−α)[γk(n)−1],ξmin

]
. (3)

However, there is a bias due to the term̂A2
k(n − 1)/λd(k)

as well. The expectation of the square of a speech spectral
amplitudeA2

k(n) equalsλx(k,n) by definition. Suppose the
algorithm with α = 1 is applied to astationary stochastic
signal. From (1) we can see that for small values ofξ̂k(n),
Â2

k(n) is nearly equal to(π/4)ξ̂k(n)λd(k), since the hyperge-
ometric functionM(−0.5;1;−vk) is then close to one. This
means that even ifλx(k,n) were known exactly, i.e.,̂ξk(n) =

λx(k,n)/λd(k), we would havêA2
k(n) ≈ (π/4)λx(k,n), i.e.,

a biased estimator ofλx(k,n) at low SNRs, because of the
factorπ/4. Note that the bias is caused by aninconsistency
between (1) and (3): the square of an estimate of the ampli-
tude is used in (3) instead of an estimate of the square. At
very high SNRs,Âk(n) ≈ Rk(n) and there is no significant
bias inÂ2

k(n).
The fact thatλx(k,n) has to be estimated, makes things

worse. Because of the factorπ/4, ξ̂k(n + 1) tends to be
smaller thanξ̂k(n). Therefore, in stationary signals, at low
SNR,ξ̂k will converge toξmin, andÂ2

k to (π/4)ξminλd , which
generally leads to too much suppression. Forα < 1, the
term (1−α)[γk(n)−1] counteracts this to some extent and
is therefore necessary, but it has a large variance for values
of α that are too small, causing musical noise and less than
optimal suppression of the noise. Forα → 1, theestimated
spectral amplitude will have a very low variance, much lower
than the variance of the true spectral amplitudeAk. This ex-
plains why at low SNRs, the estimateda priori SNR is a
highly smoothed version of thea posteriori SNR, as was ob-
served experimentally by Cappé [8]. We can conclude that
α = 1 is not optimal, not even for stationary signals, because
it generally causes too much suppression. The bias is a func-
tion of the true SNR, which is unknown. It is therefore diffi-
cult to correct for it. Ephraim and Malah [2] have pointed out

that an overestimation ofξ is more appropriate than using an
underestimate, because the gain functionG is less sensitive
to an overestimate ofξ than to an underestimate. We there-
fore choose to correct for the bias for low SNR, by inserting
a factor 4/π into (3):

ξ̂k(n) = max

[
α

4
π

Â2
k(n−1)

λd(k)
+ (1−α)[γk(n)−1],ξmin

]
.

(4)

2.2.2 Illustration for stationary signals

Figure 1 shows the effect ofα when the algorithm with
(1) and (3) or (4) is applied to a stationary stochastic sig-
nal. The blue continuous line shows the clean spectrum, the
green dashed line the enhanced spectrum when (3) is used,
the black dash-dotted line the enhanced spectrum with (4),
and the horizontal red dotted line indicates the noise level.
The overall SNR was 10 dB. It can be seen that there is not
enough noise suppression for low values ofα. For larger val-
ues ofα, there is a bias in the enhanced spectrum when (3) is
used. This bias increases with increasingα and decreasinga
priori SNR. The bias-corrected estimator (4) clearly leads to
much less signal distortion, although less of the noise is sup-
pressed in very low SNR regions of the spectrum. Similar
effects happen with the log-amplitude estimator (2). Speech
processed with (3) sounds heavily distorted forα → 1.
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Figure 1: Influence ofα on enhancement result for stationary
stochastic signals. The blue continuous line is the clean spec-
trum, the green dashed line is the average enhanced spectrum
when (3) is used, the black dash-dotted line results with (4),
and the red dotted line is the noise level.

2.2.3 Results on speech signals

Tables 1 and 2 show the average Segmental SNR improve-
ment (SSNR+) and scores from the latest PESQ measure [9]
for the standard algorithm (EM with (1); EMlog with (2)),
for thea priori SNR estimators (3) and/or (4). All 30 clean
sentences of the NOIZEUS database [10] have been used, to
which white or car noise from the Noisex-92 [11] database,
limited to telephone bandwidth (300-3400 Hz), has been
added. A randomly chosen section of the noise was added to



Table 1: Segmental SNR improvement (SSNR+) and PESQ
scores on the NOIZEUS sentences for the algorithm of
Ephraim and Malah (EM/EMlog), with the conventionala
priori SNR estimator and with a bias-corrected version, as
a function ofα and overall SNR for telephone-bandwidth-
filtered white noise.

SNR EM with (3) EM with (4) EMlog with (3)
α (dB) SSNR+ PESQ SSNR+ PESQ SSNR+ PESQ

0.5 0 2.49 1.29 2.33 1.27 3.01 1.34
5 2.45 1.63 2.28 1.61 2.96 1.71
10 2.33 2.09 2.17 2.05 2.83 2.19
15 2.12 2.55 1.96 2.51 2.59 2.66

0.8 0 3.11 1.34 2.69 1.28 3.81 1.42
5 2.97 1.69 2.56 1.61 3.64 1.82
10 2.75 2.15 2.36 2.04 3.40 2.31
15 2.43 2.57 2.06 2.46 3.03 2.74

0.98 0 4.26 1.43 3.11 1.24 4.85 1.49
5 3.66 1.82 2.66 1.57 4.28 1.92
10 3.01 2.20 2.17 1.97 3.62 2.31
15 2.31 2.55 1.66 2.36 2.83 2.69

every sentence at every SNR condition. The noise variance
λd(k) was estimated from 0.64 seconds of noise only, preced-
ing each speech sentence. The bias-correcteda priori SNR
estimator (4) gives somewhat lower objective performance
than (3). There was more residual noise, mainly becauseξ̂
of (4) does not reachξmin for very low SNRs. The enhanced
speech was also free from musical noise, forα = 0.98, but
not for the smaller values ofα. This suggests thatsmooth-
ness across time, i.e., strong correlation in the time series
of a priori SNR estimators and corresponding enhanced am-
plitudes, rather than a low (ensemble)variance, is sufficient
for avoiding the musical noise. The optimal value ofα de-
pends on the input SNR. For the lowest SNRs, the optimal
value ofα is near 0.98, while for the highest SNR it is near
0.8, according to SSNR+ and PESQ. However, there is much
more musical noise forα = 0.8, so there seems to be a dis-
agreement between these objective measures and subjective
quality at high SNRs.

2.2.4 Other statistical models

We can conclude sofar that the performance of the estima-
tors (1) and (2) depends on the properties of the particular
a priori SNR estimator used. It has been shown that the
distribution of clean speech spectral amplitudes,conditional
on a small range of (high) values of theestimated a priori
SNR deviates from Gaussianity and a Laplacian, Gamma,
or more general distribution model for the real and imagi-
nary parts or the amplitudes of the Fourier coefficients can
lead to improved speech enhancement [4] [5]. However, for
a different estimator of thea priori SNR based on GARCH
models [12], a Gaussian model leads to better results than
Gamma or Laplacian models. A slight preference for com-
plex Gaussian distributions has also been found for the DFT-
coefficients from short analysis frames of individual speech
sound classes (vowels, plosives, fricatives, etc.) [13].

The gain function and the decision-directed variance esti-
mator are linked in a non-linear feedback loop. Changing ei-
ther one of them will affect the performance of the other. We
propose a general optimization method to improve speech
enhancement algorithms for a wide range of SNR conditions.
Two gain functions are applied in parallel. The unmodified

Table 2: Segmental SNR improvement (SSNR+) and PESQ
scores on the NOIZEUS sentences for the algorithm of
Ephraim and Malah (EM/EMlog), with the conventionala
priori SNR estimator and with a bias-corrected version, as
a function ofα and overall SNR for telephone-bandwidth-
filtered car noise.

SNR EM with (3) EM with (4) EMlog with (3)
α (dB) SSNR+ PESQ SSNR+ PESQ SSNR+ PESQ

0.5 0 2.33 1.49 2.18 1.48 2.78 1.55
5 2.16 1.93 2.01 1.90 2.59 2.01
10 1.98 2.41 1.84 2.37 2.39 2.50
15 1.87 2.88 1.73 2.84 2.28 2.99

0.8 0 2.83 1.55 2.46 1.48 3.40 1.63
5 2.55 1.99 2.20 1.90 3.10 2.12
10 2.29 2.44 1.95 2.34 2.82 2.59
15 2.11 2.87 1.78 2.76 2.65 3.04

0.98 0 3.47 1.56 2.64 1.40 3.88 1.61
5 2.84 2.01 2.14 1.81 3.27 2.10
10 2.33 2.43 1.70 2.24 2.84 2.56
15 1.95 2.82 1.38 2.64 2.45 3.00

algorithm is run in the background, but for the final recon-
struction a different gain function is applied, which corrects
for some of the modeling errors and estimation inaccuracies
in the spectral variance estimatorand the gain function of the
original method. The corrective gain function is optimized
for a wide range of SNRs by means of a training procedure
on a speech database, described in section 3.1.

3. AN IMPROVED MAPPING

The Ephraim-Malah suppression rules are functions of the
a priori and a posteriori SNRs. This remains true for
non-Gaussian assumptions about the distribution of DFT-
coefficients. The decision-directed estimator of thea priori
SNR is a function of the estimated amplitude of the previ-
ous frame and the noisy amplitude of the current frame. This
means that for spectral speech enhancement algorithms that
use the decision-directed variance estimator, we can symbol-
ically write:

Âk(n) = F

(
Â2

k(n−1)

λd(k)
,

R2
k(n)

λd(k)

)
Rk(n), (5)

where F is a complicated nonlinear function which, of
course, also depends onα, andξmin. Our goal is to find a
functionF which leads to better speech enhancement perfor-
mance (in terms of a suitable objective error criterion). This
is a difficult problem. As a first step towards this goal, a
training procedure is used to find an improved mapping from
the estimateda priori SNR and thea posteriori SNR to the
enhanced amplitudes. This is implemented as a correction to
the conventional algorithm, using a two-stream procedure,as
follows: Âk of (1) or (2) will not be used for reconstruction of
the speech signal, but only for estimation of thea priori SNR
in the next frame. For reconstruction, we use an amplitude
Ãk, obtained by multiplying the noisy amplitudeRk by asep-
arate gain functionG̃(ξ̂k,γk), different from the gain func-
tion G(ξ̂k,γk). In other words, the conventional algorithm
is run in the background, forming one stream, and the final
reconstruction is another stream. This procedure guarantees
an improvement in terms of the error criterion, because the



first stream is left untouched, while the second-stream gain
functionG̃ corrects for some of the modeling errors and esti-
mation inaccuracies. For each frequency bink, the corrective
gain functionG̃ is a function of the two parameters,ξ̂k and
γk, so we can write:

Ãk = G̃(ξ̂k,γk)Rk.

G̃ is implemented as a look-up table: the support ofξ̂k and
γk is discretized in a grid. The grid points range from -19
dB to 40 dB in steps of 1 dB. Eachparameter cell contains
the values ofξ̂ and γ closest to the grid point and has its
corresponding value of̃G(ξ̂ ,γ) stored in a matrix.

3.1 The training procedure

Our aim is to find the functioñG(ξ̂k,γk) that minimizes the
mean-square error iñAk or log[Ãk] for a wide range of SNR
conditions. We have optimized over the range -15 dB to 25
dB overall SNR. This covers the range of practical interest.

G̃ is found by means of a training procedure. We have
trained on the TIMIT-TRAIN database [14]. To the clean
signals, noise is added at the various overall SNRs. Then
the Ephraim-Malah algorithm is run. In each frame, for each
frequency bin, we have a(ξ̂k,γk) pair that falls into one of
the parameter cells.(ξ̂k,γk) pairs from different frequency
bins and different frames can fall into the same parameter
cell during the course of the training. To each of those(ξ̂k,γk)
pairs corresponds a clean amplitudeAk and a noisy amplitude
Rk. Those are collected and after all the train signals are
processed, the optimal value ofG̃i j for parameter cell(i, j) is
found by minimizing

Mi j

∑
m=1

{
Ai j(m)−Gi jRi j(m)

}2

with respect toGi j. Ri j(m) is them-th noisy amplitude that
fell into parameter cell(i, j) andAi j(m) the corresponding
clean amplitude. The optimal gaiñGi j is given by:

G̃i j =
Mi j

∑
m=1

Ai j(m)Ri j(m)/
Mi j

∑
m=1

R2
i j(m). (6)

The corresponding expressions for the logarithmic case are:

Mi j

∑
m=1

{
log[Ai j(m)/Gi jRi j(m)]

}2
, G̃i j =

Mi j

√√√√
Mi j

∏
m=1

Ai j(m)

Ri j(m)
.

Some combinations of̂ξk andγk are highly unlikely and may
not, or not often enough, have occured during the training.
This means thatMi j for that cell is too small to have a reliable
G̃i j. In such cases,̂Ak(n) is used for reconstruction.

For training we used the entire TIMIT-TRAIN
database [14], which consists of about 900,000 frames
of speech. The speech signals were bandpass filtered to
telephone bandwidth (300-3400 Hz). Bandpass-filtered
computer-generated white noise was added to the train data
at overall SNRs ranging from -15 dB to +25 dB, in steps of 5
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Figure 2: (a) Trained second-stream gain function (6) for
α = 0.8 and (b) analytical first-stream gain function [2].

dB (all the train data were subjected to all SNR conditions).
Whenever a certain parameter cell was hit less than 104

times in total for all noise conditions during training, the
gain function (1) or (2) was substituted, as a function of
ξ̂k(n) andγk(n), i.e.,Âk(n) would be used for reconstruction.
Figure 2(a) shows the resulting functioñG of (6) for α = 0.8.
Figure 2(b) shows the gain function of (1) for comparison.
Particularly noticeable is that there is more suppression with
the second-stream gain functioñG than with the first-stream
gain functionG for small values of̂ξ andγ.

4. EXPERIMENTAL RESULTS

Both in training and testing we used 50%-overlapping frames
of 32 ms (256 samples at 8 kHz sampling frequency). The
data window used was a cosine-squared window, which has
the perfect reconstruction property. For testing, we used
all 30 clean sentences of the NOIZEUS database [10]. Ta-
ble 3 shows the average Segmental SNR improvement and
PESQ [9] scores for theTwo-Stream algorithm based on the
MMSE amplitude estimator (TS) and MMSE log amplitude
estimator (TSlog).1 The speech was contaminated by white
noise from the Noisex database [11], limited to telephone
bandwidth. Results are shown for three values ofα at four
overall SNRs. For Segmental SNR computation, frame SNR
values outside the range−10 dB to +35 dB are clipped.
Table 4 shows the results for contamination by telephone-
bandwidth car noise, again from Noisex.

The two-stream method performs much better than the
standard algorithm (compare with tables 1 and 2). Note
that (3) and (4) perform equally well now. Improvements in
SSNR+ are in the order of 1.5 to 3 dB, and in the range of 0.2
to 0.5 points for PESQ. Also, the optimum performance is at
a lower value ofα now. This is important, since it means that
important speech transitions are less smoothed, which should
result in less intelligibility reduction. The enhanced signals
had much less residual noise, less speech distortion, but some
musical noise was introduced. The amount of musical noise
was almost independent ofα, but increased with decreasing
SNR. PESQ scores are almost independent ofα as well and
of the error criterion used. The MMSE log-amplitude es-
timator resulted in more noise suppression than the MMSE
amplitude estimator. This was clearly audible.

1We used the same error criterion in both streams, although this is not
strictly necessary.



Table 3: Segmental SNR improvement (SSNR+) and PESQ
scores on the NOIZEUS sentences for the Two-Stream al-
gorithm (TS/TSlog) as a function ofα and overall SNR for
telephone-bandwidth white noise.

TS with (3) TS with (4) TSlog with (3)
α SNR SSNR+ PESQ SSNR+ PESQ SSNR+ PESQ

0.5 0 5.96 1.66 5.96 1.66 6.36 1.64
5 5.55 2.12 5.55 2.12 5.91 2.14
10 5.00 2.60 5.00 2.60 5.37 2.61
15 4.30 3.07 4.31 3.07 4.63 3.06

0.8 0 5.96 1.69 5.96 1.69 6.42 1.67
5 5.53 2.14 5.52 2.14 5.93 2.15
10 4.97 2.60 4.96 2.60 5.39 2.61
15 4.28 3.07 4.27 3.07 4.64 3.06

0.98 0 5.85 1.69 5.82 1.69 6.53 1.67
5 5.35 2.12 5.35 2.12 5.97 2.11
10 4.74 2.55 4.77 2.56 5.33 2.55
15 4.03 3.00 4.07 3.02 4.52 3.01

5. CONCLUDING REMARKS

Errors in the statistical models and the estimated model pa-
rameters decrease the performance of suppression rules. We
have located a large bias in the decision-directed approach
of spectral variance estimation, which causes serious speech
distortion when the weight factor approaches one.

We have shown for the standard MMSE speech spectral
amplitude and log-amplitude estimators with the decision-
directed approach for spectral variance estimation, that the
performance can be much improved by a two-stream struc-
ture. The procedure can be used to optimize for other, per-
ceptually more relevant error criteria, such as those in [15],
as long as frequency bins are treated independently. Othera
priori SNR estimators may also be used. Complex DFT es-
timators can be handled easily, when the real and imaginary
parts are assumed independent and identically distributed[5].
The resulting optimized gain functions for the real and imag-
inary parts will be the same.

In our two-stream approach, a conventional analytical
gain function and a trained corrective gain function are used.
We will investigate whether it is possible to optimize the sin-
gle functionF of (5). With the parameters shown in this
equation, there might be no need for a separate spectral vari-
ance estimator, since that would be included in the function
F automatically.
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