
THE RAPID PROTOTYPING EXPERIENCES
OF IMAGE PROCESSING ALGORITHMS ON FPGA

V. Brost, F. Yang, M. Paindavoine

Laboratoire Le2i, Aile de l’Ingnieur - Mirande
Universit de Bourgogne, BP 47870 - 21078 DIJON cedex, France

Tel : +33 3 80 39 36 08 Fax : +33 3 80 39 59 10
vincent.brost@free.fr, fanyang@u-bourgogne.fr, paindav@u-bourgogne.fr

ABSTRACT
Recent FPGA chips, with their large capacity mem-
ory and reconfigurability potential, have opened
new frontiers for rapid prototyping of embedded
systems. With the advent of high density FPGAs
it is now feasible to implement a high-performance
VLIW processor core in an FPGA. We describe re-
search results of enabling the DSP TMS320 C6201
model for real-time image processing applications,
by exploiting FPGA technology. The goals are,
firstly, to keep the flexibility of DSP in order to
shorten the development cycle, and secondly, to use
powerful available resources on FPGA to a max-
imum in order to increase real-time performance.
We present a modular DSP C6201 VHDL model
which contains only the bare minimum number of
instruction sets, or modules, necessary for each
target application. This allows an optimal imple-
mentation on the FPGA. Some common algorithms
of image processing were created and validated
on an FPGA VirtexII-2000 multimedia board using
the proposed application development cycle. Our
results demonstrate that an algorithm can easily
be, in an optimal manner, specified and then auto-
matically converted to VHDL language and imple-
mented on an FPGA device with system level soft-
ware.

1. INTRODUCTION

Electronic embedded systems play an important
role in diverse real-time signal and image process-
ing applications such as process control, telecom-
munication, satellites, and the medical field. In
the last 10 years, increasing technological capac-
ity has led to the emergence of the System-on-Chip
(SoC). Nowadays, SoCs have become ubiquitous
because of the advances in design technology that
make it possible to build complete systems con-
taining different types of components on the same
chip[1][2]. In this context, the FPGA (Field Pro-
grammable Gate Array), with its reconfigurability
and high integration capacity becomes a key solu-
tion for rapid prototyping of embedded systems[3].
These user programmable solutions are capable of
performing the hardware part of a design for a sig-
nificantly lower price and maintain many of advan-
tages of the ASIC (Application Specific Integrated
Circuit) solutions. The most interesting characteris-

tic of FPGA, with its reconfigurable nature, is prob-
ably the ability to quickly create a rapid and fully
functional prototype that can emulate and verify so-
lutions, or even be embedded into the final system.

In the standard FPGA based prototyping
methodology, algorithms are first developed in stan-
dard software programming languages such as C
or Matlab on a personal computer or workstation.
When the algorithm is later implemented in hard-
ware, the C (or Matlab) code is translated into a
hardware description language such as VHDL or
Verilog. Finally, the design is synthesized for an
FPGA-based environment where it can be tested[4].
Most hardware description languages are inherently
concurrent in nature and most high-level software
languages are not trivial for non-hardware develop-
ers. One of the key factors that encourages the wide
diffusion of electronic devices is the improvement
of the man-machine interface, where the great chal-
lenge is to allow the use of complex electronic sys-
tem by software developers. Many research labora-
tories and industrial manufacturers focus their effort
in this way.

In this article, we propose a method in or-
der to implement Digital Signal Processors (DSP)
based on the FPGA for real-time signal and image
processing. The DSP TMS320 C6201 is a Very
Long Instruction Word (VLIW) processor[5] capa-
ble of issuing and executing multiple operations
per cycle, bundled in a “MultiOp” long word in-
struction. The processor is equipped with multi-
ple functional units so as to exploit the parallelism
that has been exposed by the compiler. With our
approach, algorithms are programmed in C as if
they were to be executed on a DSP. The code is
analyzed automatically, and a DSP VHDL model
with a variable instruction set is generated and im-
plemented with FPGA technology. We easily ex-
ploit the parallelism of target applications using the
VLIW processor compiler, and quickly implement
corresponding functional units on the FPGA using
a DSP C6201 VHDL model generator. The most
innovative aspect of our work resides in the concept
of modular VLIW processor model.

Experimental results allow us to observe a phe-
nomenon of under-utilization of DSP. For example,
all hardware resources are not inevitably necessary
for a target application, or they are not all used at

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



the same time. For this reason, we show that it is
possible, by analyzing the instruction code, to re-
alize modular DSP C6201 VLIW processors using
available hardware resources in an optimal man-
ner. We enable a CPU model of the VLIW DSP on
the FPGA which contains only the bare minimum
number of instruction sets, or modules, necessary
for each target application. Thus, several modular
VLIW processors can easily be made with a single
FPGA in order to build a parallel machine.

In following sections, we introduce firstly a
short description of the TMS320 C6X DSP CPU
architecture. Then principles and concepts of our
approach are illustrated by an edge extraction ex-
ample using the Sobel filter. We describe also ex-
perimental results obtained for some common al-
gorithms of image processing realized on a FPGA
Virtex II-2000 multimedia board using the proposed
development cycle.

2. TMS320 C6X DSP CPU DESCRIPTION

In recent years, diverse DSP architectures have
been developed in order to boost processor perfor-
mance. These processors achieve higher perfor-
mance mainly by increasing their parallelism level
and clock rate. The TMS320 C6X DSP of Texas In-
struments (TI) employs an advanced VLIW proces-
sor architecture. TMS320 C6x DSP CPU frequen-
cies range from 150 MHz to 1 GHz. The DSP C6x
possesses 8 pipelined levels of fetch packets and
can do eight operations per clock-cycle[6]. Their
instruction length is 32 bytes. Figure 1 shows the
CPU architecture of the TMS320 C6201.

Figure 1: The TMS320 C6201 CPU includes a pro-
gram fetch unit, instruction dispatch and decode
units, two data paths supported by eight functional
units, and 32 general purpose registers.

The instruction processing occurs in each of the
two data-paths, each of which contains four func-
tional units (L1, S1, D1, and M1 for data-path A
and, L2, S2, D2, and M2 for data-path B) and 16 32-
bit register files (RA0-15 for data-path A and RB0-
15 for data-path B). Each functional unit has access
to all registers of its data-path and registers of the
other data-path via two cross-paths. It is possible to
exchange data between memory and registers. Each
data-path possesses 93 operation types : 23 for unit
L, 28 for unit S, 20 for unit M, and 22 for unit D.

3. PROPOSED APPLICATION
DEVELOPMENT CYCLE PRESENTATION

Intel hex code

Application development in C or 

Xilinx ISE tools

ASM using Code Composer Studio
(Compilation and Simulation)

Code analysis in order to extract the
hardware resources used (functional 
units, registers and instruction set)

Hardware database

VHDL code generation of the
C6201 model corresponding

to the application

VHDL files

Synthesis and implementation on
the Virtex II board using

Figure 2: Application development cycle: the
VHDL generator automatically produces only de-
scription code corresponding to hardware resources
used for a target application.

The Figure 2 presents our application develop-
ment cycle. We describe its principles and concepts
from algorithm programming to implementation on
an FPGA, by an edge extraction example using the
Sobel filter which is usually implemented with a
convolution using two3×3 masks.

3.1 Application code analysis

For a target application, we can develop applica-
tions in C or Assembler as if they will be exe-
cuted on a DSP. Then, the corresponding C6201
machine code is generated using Code Composer
Studio compiler of TI. For DSP C6201, VLIW in-
struction length is 32 bytes whose 8 segments can
be destined to a single functional unit (sequential)
or up to eight functional units (parallel). Each seg-
ment of the C6201 code contains information as a).

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Operation type, b). Functional unit where the op-
eration will be executed, c). Used registers for op-
eration sources and operation destination, and d).
Operation will be or will not be executed in parallel
with others.

By analyzing the complete C6201 code for an
algorithm, we can know the number of functional
units used and their instruction set, as well as nec-
essary registers. This stage of hardware resource
extraction is automatically done by our generator
(written in Visual C++). The hardware resource
database is composed of two parts: a database for
each functional unit of C6201 CPU, and a common
database for registers of C6201 CPU.

The behavior of each C6201 functional unit is
organized into operation groups, with each group
containing a set of operations having some common
characteristics. Each operation is described in terms
of its opcode and operands. Each operand is clas-
sified either as source or as destination. In the first
part of the database, we extract source operand dat-
apaths and corresponding opcode for all operations
destined to each functional unit. In the second part
of the database, we arrange registers used for the
destination operands of each functional unit.

From the hardware resource database, we can
regroup all analysis results (see tables 1, 2, and 3) in
order to obtain necessary information for the modu-
lar C6201 CPU. For this Sobel filter application, we
use only 6 functional units (8 available in C6201
CPU), 23 registers (32 available in C6201 CPU),
and 16 operation types (186 available in C6201
CPU). We also economize81.8% (70/384 used)
of connections for source operand datapaths and
75% (40/160 used) of connections for destination
operand datapaths.

Table 1:Summary analysis results of operation type
for functional units used. The ratio represents the
number of necessary operation types in comparison
with the number of available operation types in the
C6201 CPU.

Unit Opcode Ratio
L1 SUB, ABS, ADD 3/23
L2 AND, ADD, SUB, ABS 4/23
S1 ADD, Shift, AND 3/28
S2 ADD, Shift 2/28
D1 ADD, SUB 2/22
D2 ADD, SUB 2/22
M1 0/20
M2 0/20

3.2 VHDL generation of the CPU model

From the hardware resource used database estab-
lished in the code analysis stage, our generator
makes a minimum C6201 CPU model for a target
application. Figure 3 shows the general structure of
generated C6201 CPU VHDL model correspond-
ing to a complete application. Each functional unit
retrieves two source operands src1 and src2 and un-
dertakes an operation. Then the destination operand

Table 2: Summary analysis results of source
operand datapaths for functional units used. The
connection ratio represents the number of neces-
sary connections between registers and functional
units for sources operand datapaths in compari-
son with the number of available connections in the
C6201 CPU.

Functional Connection Ratio
unit Src1 Src2
L1 3/32 7/32
L2 3/32 8/32
S1 6/16 10/32
S2 2/16 11/32
D1 4/16 5/16
D2 5/16 6/16
M1 0/16 0/32
M2 0/16 0/32

Table 3: Summary analysis results of destination
operand datapaths for registers used. The connec-
tion ratio represents the number of necessary con-
nections between registers and functional units for
destination operand datapaths in comparison with
the number of available connections in the CPU
C6201.

Register Connection Register Connection
A ratio B ratio
RA0 1/5 RB0 2/5
RA1 3/5 RB1 1/5
RA2 3/5 RB2 2/5
RA3 0/5 RB3 2/5
RA4 2/5 RB4 0/5
RA5 0/5 RB5 1/5
RA6 1/5 RB6 3/5
RA7 0/5 RB7 0/5
RA8 1/5 RB8 1/5
RA9 3/5 RB9 2/5
RA10 2/5 RB10 0/5
RA11 0/5 RB11 1/5
RA12 2/5 RB12 0/5
RA13 0/5 RB13 1/5
RA14 2/5 RB14 1/5
RA15 2/5 RB15 1/5

is transmitted to a register for memory storage or in
order to prepare for another operation.

We respect eight pipelined levels of the DSP
C6201 in order to control execution time schedul-
ing: program fetch, instruction dispatch, and in-
struction decode units deliver up to eight 32-bit in-
struction to functional units every CPU clock cycle.
This mechanism has been described in VHDL code
and implemented on a FPGA.

Note that the CPU VHDL model is modu-
lar. VHDL codes are generated automatically us-
ing VLIW code analysis results specific to a target
application. Therefore, we can economize FPGA
hardware resources so as to implement several mod-
ular C6201 CPU models.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



M
U
X

M
U
X

M
U
X

M
U
X

M

X
U

M
U
X

M
U
X

S1.

src1

src2

L1.

src1

src2
D2.

dst

dst

dst

Fetch
Dispatch
Decode

Code
Hex.

RA15

RB0

RB15

RA0

clk

clk

RA1

src1

src2

Figure 3: Simplified diagram of C6201 CPU VHDL
model: we draw only the source operand datapaths
from registers RA0 and RA1, and only the destina-
tion operand datapaths are represented for register
RB0.

3.3 Multi-DSPs implementation on a FPGA

Complete application design cycle has been real-
ized and validated on an embedded system con-
taining an FPGA VirtexII-2000. First, we imple-
mented the Sobel filter with a single model of DSP
TMS320 C6201. This first hardware implementa-
tion used 18% of the available slices (slice = basic
cell logic of FPGA) which is quite low. Then, we
embedded four models of the DSP TMS320 C6201
in order to improve hardware implementation per-
formance. Each512× 512 pixel image is divided
into 4 horizontal bands, each of which is processed
by a DSP C6201. Thusly, we built a SPMD (Single
Program Multiple Data) parallel machine. Table 4
gives hardware performances. Only 4 ms are neces-
sary for edge extraction of an image using Sobel fil-
ter (Oscillator frequency = 100 MHz). This leaves
time to process the other, more complex, stages.

Table 4: Hardware implementations performances
of the Sobel filter.

1 DSP 4 DSPs
Number of Slices used 1965 6544

Slices used ratio 18% 60%
Processing speed 15.7 ms 4 ms

4. EXPERIMENT RESULTS

In this section, we present obtained experiment re-
sults for rapid prototyping of image processing ap-
plications on the FPGA VirtexII using the proposed
development cycle.

The architecture used for this research project
is the multimedia board from Xilinx (see Fig-
ure 4). This contains a VirtexII XC2V2000 as
the user application FPGA where we implement
modular C6201 CPU VHDL models and one PI-
COBLAZE VHDL model[7] for control manage-
ment. This board also supports five independent
banks of512K×36bits 130 MHZ ZBT RAM with
byte write capability. This memory may be used as
microprocessor code/data store, or as video frame
buffers. Real time video is supported with a PAL-
NTSC video decoder/encoder pair. The VirtexII
also generates the digital video stream for the video
encoder. Video output is provided in S-video and
composite video as well as RGB formats.

Figure 4: The VirtexII multimedia board.

We have created and tested some common im-
age processing algorithms using this multimedia
board. Obtained experiment results are presented in
tables 5, 6 and 7. Table 5 gives results of code anal-
ysis and hardware resource extraction for each algo-
rithm : operation type used ratio, source (src) con-
nection ratio and destination (dst) connection ratio
between functional units and registers of two data-
paths. Note that Convolution, Median and Erosion
operations use masks of3×3, and IIR filter opera-
tion has been realized with 9 coefficients.

Table 5:Results of code analysis and hardware re-
source extraction for each modular VHDL DSP. The
DSP TMS320 C6201 CPU possess 186 operation
types, 384 connections for source operands and 160
connections for destination operands.

Operation Src Dst
Algorithm type used connec. connec.

ratio ratio ratio
Conv. 32/186 96/384 86/160
Median 22/186 89/384 68/160
Erosion 30/186 60/384 68/160
2D Wavelet 40/186 83/384 84/160
IIR filter 28/186 52/384 44/160

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



We have also simulated the complete DSP
C6201 CPU VHDL model which uses 14361 slices
of the FPGA VirtexII that corresponds to134%of
available resources on the FPGA VirtexII-2000. Ta-
ble 6 presents the slice used ratio and the percent-
age of corresponding modular VHDL DSP for each
algorithm in comparison with a complete VHDL
DSP C6201. These percentages have been calcu-
lated with numbers of slices used. On the aver-
age, these common image processing algorithms
use only30% of available resources of the DSP
C6201. This allows us to implement several mod-
ular VHDL DSPs on a single FPGA in order to
improve real-time performances. Table 7 gives ob-
tained performances for each image processing al-
gorithm using the multimedia board : number of
modular VHDL DSPs realized, slices used ratio and
the processing speed. These results show that we
use available resources on the FPGA to a maximum,
in an optimal manner, in order to increase real-time
performances.

Table 6:Results of the percentage of VLIW DSP for
some common image processing algorithms. Per-
centages have been measured with hardware re-
sources used on the FPGA.

Algorithms Slices used Percentage
ratio of VLIW DSP

Conv. 44% 33%
Median 32% 23.8%
Erosion 31% 23.1%
2D Wavelet 43% 32.1%
IIR filter 24% 17.9%

Table 7:Obtained performances using the multime-
dia board: processing speeds have been measured
with the image size of512×512pixels.

Algorithms Nb. Slices Processing
DSPs used ratio speed

Conv. 2 88% 6 ms
Median 3 96% 8 ms
Erosion 3 93% 0.14 ms
2D Wavelet 2 86% 10 ms
IIR filter 4 96% 3.2 ms

5. CONCLUSIONS AND PERSPECTIVES

In this article, we present research results of en-
abling the DSP TMS320 C6201 CPU for real-time
image processing applications, by exploiting FPGA
technology. The proposed design method is il-
lustrated and validated. Our experimental results
demonstrate that modular VLIW processors spe-
cific to a target application can be implemented on
an FPGA device in a very short design cycle.

Our approach applies some criteria for design
tools: flexibility, modularity, performance, and
reusability. In this paper, the target VLIW proces-
sor is DSP TMS320C6x. Our proposed design cy-
cle can be generalized to other VLIW processors.

An image processing algorithm can be as easily re-
alized on an FPGA device as on a VLIW processor
by a non-expert in electronics using the proposed
method. This illustrates the usefulness of our ap-
proach for rapid prototyping of embedded systems.
We have introduced modular Software/Hardware
models. Only the bare minimum number of instruc-
tion sets necessary for a target application is imple-
mented on DSP VHDL models. Thus, we can econ-
omize hardware resources of FPGA so as to imple-
ment several modular VLIW processors using a sin-
gle FPGA.

In perspective, we would program an interface
between the Mapping Algorithm Architecture help
tool SynDEx and our VHDL DSP generator in or-
der to facilitate the multi-processors development.
SynDEx performs an optimized implementation of
a given algorithm onto a given parallel architec-
ture which allows us to improve memory models
and communication protocols. For some complex
applications, the VHDL code size of the gener-
ated C6201 CPU model will be too large. We
can decompose these algorithms into several sub-
tasks. We are considering the two options. First,
we will implement some hardware components that
perform specific tasks in order to increase real-
time performance. Second, we also are consider-
ing an algorithm of several stages using capabilities
of partial and dynamical configuration of VirtexII.
SW/HW VHDL models for the next stage will be
loaded in the FPGA at the same time as the cur-
rent stage execution. For each stage, the generated
SW/HW models correspond only to the minimum
number of instruction sets of this stage.

REFERENCES

[1] K. Balakrishnan and N.A. Touba,Matrix-based
software test data decompression for system on
a chip, Journal of Systems architecture, Vol.50,
pp.247-256, 2004.

[2] D. Gizopoulos,Low-cost, on-line self-testing
of processor core based on embedded software
routines, Microelectronics Journal, No.35,
pp.443-449, 2004.

[3] M.A. Aguirre, J.N. Tombs etal., Micropro-
cessor and FPGA interfaces for in-system
co-debugging in field programmable hybrid
systems, Microprocessors and Microsystems,
Vol.29, Issues 2-3, pp.75-85, 2005.

[4] M. Rupp, A. Burg and E. Beck,Rapid proto-
typing for wireless designs: the five-ones ap-
proache, Signal Processing, Vol.83, pp.1427-
1444, 2003.

[5] P. Faraboschi,The design of a technology plat-
form for custom VLIW embedded processors,
Computer Physics Communication, Vol.139,
pp.104-108, 2001.

[6] TMS320C6000 Technical Brief SPRU197D
(02/99).

[7] http://www.xilinx.com.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


