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ABSTRACT Further to this, the following assumptions are made:
Extraction of temporomandibular Joint (TMJ) sound sources
is attempted in this paper. A priori knowledge of the geo-A1: The super-Gaussian TMJ sources enjoy mutual in-
metrically constrained medium (i.e. the head) to extract the dependence (as confirmed empirically).
temporomandibular joint sound sources from their anechoig2: The lagp can be be computed a priori.
mixtures is exploited. This is achieved by estimating the de
lay of the contra lateral (from the opposite side) sourcéiwit Proposing an instantaneous BSS algorithm to solve the
the anechoic mixtures. Subsequently, we consider the mixinTMD anechoic BSS problem is the objective of this study.
medium as a multichannel filter of constrained length wheThe structure of the paper is as follows; in the following
reby the instantaneous mixing hypothesis can be assumed fegction we outline some relevant backgrounds prior to
each lag. Last but not least, we utilize mutual informatien athe development of the proposed algorithm. Section 3
a selection criterion to pick the correct independent compooverviews FastICA [4] and from this analysis, the algorithm
nents. Successful reconstruction of the TMJ sources (fre® reconstruct the TMD sources is developed. This is
from artefacts present in the estimates of the TMJ sources tfgllowed by a resura of the algorithm. Furthermore, section
other well-known signal processing techniques) was achie4 provides visual comparisons of the performance of our
ved. algorithm against algorithms such as Parra’s [5], whicle tak
advantage of the nonstationarity of the sources (conwauti
1. INTRODUCTION modelling), DUET of Ozgir and Rickard [6] which per-
Temporomandibular disorder (TMD) refers to medical pr°'f()vr$1?ugmet'r§;eggﬁ\?§r¥tiBnnﬁlfﬁndgeégﬂggﬂ?fomggﬁmg&’sﬁ;g
blems associated to the region of mandible (lower jaw) an_ICA) FastiCA [4] (instantaneous modelling). We highlight

the temporal bone (skull). Dysfunction, internal derange ‘ . X :
ment (sﬂch as disc( disp)laceyment), and osteoarthrosis?l a%e fact that even a high signal to interference ratio (SIR)

examples of this disorder [2]. TMD is conventionally diag- might not be satisfactory as the goal is to supply the dental

nosed by stethoscope auscultation. Similarly, TMJ soundgf’eCia”St with TMJ source sounds free from ‘artefacts’ of
' ! e contra sources. Lastly, we conclude and suggest further

have long been related with TMD [1, 2, 3]. Identification of ks in Section 5
the right TMJ source (such as click and crepitus) is in parWOr S In Section .
ticular challenging, when the TMJ sources mix. Therefore,
this study investigates how a priori knowledge of our geo- 2. BACKGROUND
metrically constrained environment assists in separdtiag . -
two sources from their pair of anechoic mixtures by estima2-1 Thetemporomandibular joint sources
ting the lagp of the contra lateral source with respect to theTMJ sounds can be classified into two categories: click and
ipsi lateral (from the same side) source. The mixing model igrepitus. A click can be regarded as a brief, acute sound
represented as: within the joint (thought to be prompted by the sudden colli-
2 sion of opposing wet surfaces). Clicks may arise due to the
Xi(t) = Zhijsj (t—&j) (1)  perforation of the disc (or its displacement) which holds th
= mandible and the temporal bone. Therefore, the patient may
suffer from dysfunction and internal derangement. On the
contrary, crepitus is a grating and continuous sound throu-
ghout movement (e.g. chewing). The presence of crepitus
ints the presence of a degenerative joint disease (e.g. os-
oarthrosis). Therefore, wrong detection of these sounds
eads to misdiagnosis of TMD. A dental specialist has to dis-
inguish between the TMJ sources whenever only one exists
or they are combined together. Besides, both the click and
the crepitus are further sub-divided into soft and hard-cate
his  hoz P gories. A soft TMJ source usually manifests when a patient
hp1z7 P hy (@ Sstarts to suffer from TMD, while a hard TMJ source may be

where x(t) is theith TMJ mixture signal at discrete time t
fori=1,2. hj are the attenuation coefficients adgare the
time delays associated with the path from fltie source to
theith sensor (stethoscope). The problem of reconstructin
the sources from their anechoic mixtures can be formulate
as blind source separation (BSS). Due to the proximity o
the sources to the electrodes, the mixing makixan be
expressed as:



synonymous to a mature stage of TMD. For example, the left o5
temporomandibular joint may be more damaged than its right
counterpart. In this situation, a soft TMJ source and a hard
TMJ source arise. One can refer to [2] for more information
on TMJ sounds.
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2.2 FastICA

FastICA has not yet been considered to estimate the TMJ
sources from their anechoic mixtures. It maximizes the ne-
gentropy (of the linear combinations of the mixture sighals
that can be approximated as
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Figure 1: Values of8 for 100 Monte Carlo trials. The small

where Neg(.) stands for negentropy{.E the statistical value < |0.015) of B suggest$ ~ 0

expectation, and kurt(.) the kurtosis. By optimizing the ne

gentropy, FastICA will compute a vectar= [w1, W, ..., W)

(where m is the number of mixture signals), which is one of

the rows of the so-called separating makfix is the sampling frequency (Hz). Since Fs in our study is 10
KHz, p = 1 sample lag. Due to this small lag, one may also

Let us examine the case where there are two mixturéay that the TMD problem here can be formulated as an ins-

signalsx(t) = [x1(t);x2(t)]" with our instantaneous mixing ~ tantaneous source separation.

matrix H (2) with lag p = 0. wa = [w1,wy| is the best

possible linear combination of the mixture signajétx and 3. DEVELOPMENT AND ANALYSISOF THE

X2(t) to give a super-Gaussian independent componghty PROPOSED FASTICA ALGORITHM

Recall our model (1) withd defined in (2). Earlier, we com-

yi(t) = arg, sub (Neg(wlxl(t) +W2X2(t))) (4)  puted the lagp = 1 for our constrained size medium (the
v head). Hence, we delay ) to yield x(t-1) prior to the de-

FastICA comprises of the objective function (4) and its opti termination of y(t) . Therefore, FastICA performs the follo-

mization by fixed point iteration. Suppose tha() ~ () ~ WINg optimization:

(up to a scaling factor), given the successful optimizatibn

(4). Expanding y(t), we have y1(t) = arg sup (Negwrxa(t-1)+woxa(1))  (6)

W1,W;
yi() = waxa(t) +waxa(t)

If we expand the arguments of equation (6), we have
= W (h1181(t) + h1252(t)) +wz (thsl(t) + hzzsz(t))

yi(t) = wixg(t-1)+waxo(t)
= s(t) (h11W1 + h21W2) +52(t) (h12W1 + hzzwz) !
= W (hllsl(t'l) + h1232(t'2)) +
a B

(5) wWo (thSl(t'l) + h2252(t))
From the above, we can infer that= 0, and y(t) = as;(t). = s(t1) (h11W1 + h21W2) +
In Figure 1, we show empirically that maximizing (4) will —_—
give B =~ 0 when two super-Gaussian sources are syntheti- 14
cally mixed for 100 Monte Carlo trials, using a differdtt W1h125(t-2) + Wahoosy (1) (7

(randomly generated) in each trial.
If we assume yt) =~ $(t-2) + $(t) (up to a scaling fac-
2.3 The TMD anechoic mixing model with lag p tor), theny ~ 0. ConsiderA = wihi +wzhyo so that

The head can be considered homogeneous in terms of acoM%lh1252£t'2)fv‘ﬁh2252(t) ~ ASy(D). Besides,l let us supp?se
tic properties as the acoustic impedance (1) of the skull ang2(t-2) ~ S2(1); this assumption is reasonable in terms of ne-
that of the brain are approximately equalghe~ lprain~ gentropy, i.e. Ne@s(t-2)) ~ Neg(s(t)) as t— . Hence,

. t) approached s;(t). We run 100 Monte Carlo trials to
10°) compared to that of air 4}, ~ 10%) [7]. Therefore, most Yal L i
of those multipaths will be refracted out of the head with show that optimizing (6) results ip~ 0 and thatt 7 0 (as

negligible amount of attenuated reflections (echoes) withiariggsg;ﬁ%% 'P:égg:gsszgda?gure 3). We can also deduct that

the brain. Hence our anechoic model is reasonable. On t
other hand, the brain mean width is 0.16m in [8] while in

[9] it is 0.14 m. In our study, we consider the brain width to yi() = arg min (Neg(ysl(t—l))) +
be 0.15 m. Given that the speed of sound within the brain h L2 2 h 8
is 1505 m/s [7], the lag corresponds to 10's. In terms W1h12%(t-2) + W2ha2S(t) (8)

of number of samples, this lag will be 10 x Fs, where Fs AS5(t)
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Figure 2: Values of/ for 100 Monte Carlo trials. The small
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Figure 3: The values of when 100 Monte Carlo trials were
run. On average, it can be deducted that> O indicates
A % 0. The scaling ambiguity in ICA arises duexa>> 0.

To extract a goodapproximation of sy(t), the key term is
arg miny, w, (Neg(ysl(t—l))). It is in fact minimized by

FastICA (as shown in Figure 2).

At this point, note that y(t) ~ Asy(t). The second inde-
pendent component,ft) will be a poor estimation of the
second source. FastICA will search for another veetgr
orthogonal tow,, while maximising (6).

Yo(t) = Sl(t'l)(hllwl + h21W2) + hpowis(t-2) +
hoowos,(t) 9

Note that new values of wand w are computed fow,. Re-

Owing to the misalignment ob§-2) and s(t) in minimizing
Neg(.) in (10), a poor estimation of () will ensue. It is
desired thaf = 0 to extract a good estimate of(s1). On
the other handy conveys the scaling ambiguity of(&-1).
As mentioned earlier, the misalignment o{ts2) and s(t)
in (10) will not necessarily fulfil the conditiod ~ 0. 100
Monte Carlo simulations (shown in Figure 4) to evaluate
supports this statement.
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Figure 4: Values ofA for 100 Monte Carlo trials. The occu-
rence of non-zero values afsuggesta s 0. Compare with
Figure 2
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Figure 5: The values af for 100 Monte Carlo trials. Herg,
conveys the scaling ambiguity prevailing in ICA.

From these simulations, it is clear that the second inde-
pendent componentft) will still consist of $(t) and 5(t).

call that the mixture signaliXt) was delayed by one sample, Note that the latter is the dominant component ity
i.e. x(t-1). This data manipulation is also equivalent to de-qye to the higher values of as illustrated in Figure 5.
laying s (t) in xa(t) by 1 sample. Consequently, the align- Therefore, we cannot estimatg(t with the mixture matrix

ment of §(t-1) in both mixture signals, i.e. 2Xt) and »(t)

X = [x1(t-1) x2(t)]T. To overcome this, we simply consider

is achieved. This alignment has enabled FastICA to optimizgne |agged version ofxt) by 1 sample, keepinguk) untou-

equation (8). But, in estimating &), FastICA will have to
optimize:

Yo(t) = r':lrgwrlr)\i,\r;2 (Neg(wlhlez(t-Z)+W2hzzSz(t)))+
ysi(t-1) (10)

ched. Hence, the new mixture matrixX@s= [x(t) x(t-1)]".
However, this procedure will result in 4 independent compo-
nents, with only two of them being consistent estimations of
the true TMD sources. The selection of the correct pair of
independent components can be done by computing the mu-
tual information (MI) between any two pairs. The pair with



that I is employed as a measure of statistical independence a:abflg%ri;lr—}?ﬁstable below summarizes the performances of

The algorithm presented herein can be summarized as

the minimum Ml is picked as the right ones. It is understoodlh

follows: Algorithm Signal-to-interference ratio/dB
: Time delayed mixture methog 74.14

L. Estimate th.e_lgg. o ; Instantaneous FastICA 48.20

2. Randomly initialize the mixing matriki Parra’s algorithm 56.50

3. De.l.ay %() by p samples . Time-Frequency Approach 17.61

4. Utilize x1(t-p), x2(t) & H as inputs to the FastICA algo-

rithm. This will yield y;(t) and y(t).

. Similarly, repeat steps (3)-(4) withoft) delayed to The TMJ sources

Xo(t-p) instead of x(t). Consider the pair of independent
components obtained at this step to hé)yand ys(t).

6. Measure the Ml between {t) & y a(t), y1(t) & ys(t), y2(t) R S N B R

&y(t), and y(t) & ys(t). A o

. Select the pair with minimum MI.

8. If Ml of the selected paip criterion, go back to step (2).
Otherwise, the pair of independent components are the ° D
estimates of TMJ sources. The pair

The last step (i.e. mutual information threshold/criterion) ‘

guarantees that the best estimates of the TMD sources are ]

achieved since the performance of the FastICA may vary ac- o

cording to initialization of the mixing matrixd. In theory,

MI = 0 when two sources are statistically independent, but

in practice, the citerioa 0.1 was set. Thus, the algorithm

ends when Mk 0.1. h I
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4. SIMULATIONS

The following scenario is considered: Figure 6: From top to bottom: soft click, hard click sources
and their TMJ anechoic mixtures.

The displacement of the discs holding the mandible
and the temporal bone gives rise to clicks. Moreover,
the assumption that one temporomandibular joint is more,

. . . e can remark similar observations, regarding the estgnate
damaged’ than the other is made. In other words, bot , . T .
the soft and hard TMJ sources are present. Furthermovl;bﬁf Parra’s algorithm [5] and those @izgir and Rickard [6]

Figure 9. Table 1 summarizes the performance of those

these TMJ sources (when measured separately) were mix . ; : o .
synthetically by the randomly generated matix %ﬁg:r::?a?\? ematne;{;;sf signal-to-interference ratio (Siét)a

5. CONCLUSION

g ( —03031 —0.4220z1
—\ 0142621 —0.2030

) . In this work, anechoic BSS of TMJ sources has been addres-
In the first place, we show the TMJ sources and their aneseq \we have taken advantage of our geometrically constrai-
choic mixtures in Figure 6. Moreover, the four mdependenged medium by pre-calculating the lag of 1 sample. Simi-
components (ICs) evaluated by FastiCA when we delayefl, iy \ve have demonstrated the potential of considerieg th
one of the mixture (one at a time) signals by 1 sample, argg|ayed versions of the mixture signals to solve this TMD
illustrated in Figure 7. Besides, we emphasize that an angsioplem. For clinical diagnosis of TMD and an accurate clas-
choic model with a sample lag @ine cannot be formula-  gigication of the abnormalities, minor artefacts (commonly
ted as an instantaneous BSS. These are shown in F'g_“ree.%en in conventional BSS algorithms) are absent in the sourc
Last but not least, we use Parra’s al_gonthm [5] and the timeggtimates of our method. This is why we haisually de-
frequency approach dDzgir and Rickard [6] to compare mqngirated the estimates of our method, compared to those
ywth. our results. Their TMJ source estimates can be seeg parra [5],0zgir & Rickard [6], and against the instanta-
in Figure 9. neous FastICA. Mutual information employed as a classifi-

cation criterion has proved successful in selecting thescbr
pair independent components in the final stage of our algo-

Remarks. For each simulation of the BSS algorithms, therithm. However in our study, we had to perform data mani-
first estimate is considered to be soft click and the other egpulation (delay of the mixture signals) prior to using ths-in
timate as hard click. Besides, only the first two artefactgantaneous ICA algorithm. This was to compensate the lack
are highlighted for neatness purpose. In the two lower plotsf knowledge of FastICA about the anechoic model. Further
of Figure 8, it is obvious that each of the estimates of thavork will be done on the development of a BSS algorithm
sources still has ‘artefacts’. Thus, an anechoic mixturg of that already assumes an anechoic model to leapfrog the data
sample lag cannot be formulated as an instantaneous BS®anipulation step to tackle this TMD BSS problem.
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Figure 8: The two upper plots show the reconstructed TMJ
sources (from top to bottom:aft) and yi(t)) of the delayed
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