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ABSTRACT
Extraction of temporomandibular Joint (TMJ) sound sources
is attempted in this paper. A priori knowledge of the geo-
metricallyconstrained medium (i.e. the head) to extract the
temporomandibular joint sound sources from their anechoic
mixtures is exploited. This is achieved by estimating the de-
lay of the contra lateral (from the opposite side) source within
the anechoic mixtures. Subsequently, we consider the mixing
medium as a multichannel filter of constrained length whe-
reby the instantaneous mixing hypothesis can be assumed for
each lag. Last but not least, we utilize mutual information as
a selection criterion to pick the correct independent compo-
nents. Successful reconstruction of the TMJ sources (free
from artefacts present in the estimates of the TMJ sources by
other well-known signal processing techniques) was achie-
ved.

1. INTRODUCTION

Temporomandibular disorder (TMD) refers to medical pro-
blems associated to the region of mandible (lower jaw) and
the temporal bone (skull). Dysfunction, internal derange-
ment (such as disc displacement), and osteoarthrosis are
examples of this disorder [2]. TMD is conventionally diag-
nosed by stethoscope auscultation. Similarly, TMJ sounds
have long been related with TMD [1, 2, 3]. Identification of
the right TMJ source (such as click and crepitus) is in par-
ticular challenging, when the TMJ sources mix. Therefore,
this study investigates how a priori knowledge of our geo-
metrically constrained environment assists in separatingthe
two sources from their pair of anechoic mixtures by estima-
ting the lagp of the contra lateral source with respect to the
ipsi lateral (from the same side) source. The mixing model is
represented as:

xi(t) =
2

∑
j=1

hi js j(t−δi j) (1)

where xi(t) is the ith TMJ mixture signal at discrete time t
for i = 1,2. hi j are the attenuation coefficients andδi j are the
time delays associated with the path from thejth source to
the ith sensor (stethoscope). The problem of reconstructing
the sources from their anechoic mixtures can be formulated
as blind source separation (BSS). Due to the proximity of
the sources to the electrodes, the mixing matrixH can be
expressed as:

H =

(

h11 h12z−p

h21z−p h22

)

(2)

Further to this, the following assumptions are made:

A1: The super-Gaussian TMJ sources enjoy mutual in-
dependence (as confirmed empirically).
A2: The lagp can be be computed a priori.

Proposing an instantaneous BSS algorithm to solve the
TMD anechoic BSS problem is the objective of this study.
The structure of the paper is as follows; in the following
section we outline some relevant backgrounds prior to
the development of the proposed algorithm. Section 3
overviews FastICA [4] and from this analysis, the algorithm
to reconstruct the TMD sources is developed. This is
followed by a resuḿe of the algorithm. Furthermore, section
4 provides visual comparisons of the performance of our
algorithm against algorithms such as Parra’s [5], which take
advantage of the nonstationarity of the sources (convolutive
modelling), DUET of Özg̈ur and Rickard [6] which per-
forms time-frequency masking (anechoic modelling), and
eventually the conventional independent component analysis
(ICA) FastICA [4] (instantaneous modelling). We highlight
the fact that even a high signal to interference ratio (SIR)
might not be satisfactory as the goal is to supply the dental
specialist with TMJ source sounds free from ‘artefacts’ of
the contra sources. Lastly, we conclude and suggest further
works in Section 5.

2. BACKGROUND

2.1 The temporomandibular joint sources

TMJ sounds can be classified into two categories: click and
crepitus. A click can be regarded as a brief, acute sound
within the joint (thought to be prompted by the sudden colli-
sion of opposing wet surfaces). Clicks may arise due to the
perforation of the disc (or its displacement) which holds the
mandible and the temporal bone. Therefore, the patient may
suffer from dysfunction and internal derangement. On the
contrary, crepitus is a grating and continuous sound throu-
ghout movement (e.g. chewing). The presence of crepitus
hints the presence of a degenerative joint disease (e.g. os-
teoarthrosis). Therefore, wrong detection of these sounds
leads to misdiagnosis of TMD. A dental specialist has to dis-
tinguish between the TMJ sources whenever only one exists
or they are combined together. Besides, both the click and
the crepitus are further sub-divided into soft and hard cate-
gories. A soft TMJ source usually manifests when a patient
starts to suffer from TMD, while a hard TMJ source may be



synonymous to a mature stage of TMD. For example, the left
temporomandibular joint may be more damaged than its right
counterpart. In this situation, a soft TMJ source and a hard
TMJ source arise. One can refer to [2] for more information
on TMJ sounds.

2.2 FastICA

FastICA has not yet been considered to estimate the TMJ
sources from their anechoic mixtures. It maximizes the ne-
gentropy (of the linear combinations of the mixture signals)
that can be approximated as

Neg(y)=
1
48

kurt(y)2 +
1
12

E{y3}2 (3)

where Neg(.) stands for negentropy, E{.} the statistical
expectation, and kurt(.) the kurtosis. By optimizing the ne-
gentropy, FastICA will compute a vectorw = [w1,w2, ...,wm]
(where m is the number of mixture signals), which is one of
the rows of the so-called separating matrixW.

Let us examine the case where there are two mixture
signalsx(t) = [x1(t);x2(t)]T with our instantaneous mixing
matrix H (2) with lag p = 0. wa = [w1,w2] is the best
possible linear combination of the mixture signals x1(t) and
x2(t) to give a super-Gaussian independent component y1(t).

y1(t) = arg sup
w1,w2

(

Neg(w1x1(t)+w2x2(t))
)

(4)

FastICA comprises of the objective function (4) and its opti-
mization by fixed point iteration. Suppose that y1(t) ≈ s1(t)
(up to a scaling factor), given the successful optimizationof
(4). Expanding y1(t), we have

y1(t) = w1x1(t)+w2x2(t)

= w1

(

h11s1(t)+h12s2(t)
)

+w2

(

h21s1(t)+h22s2(t)
)

= s1(t)
(

h11w1 +h21w2

)

︸ ︷︷ ︸

α

+s2(t)
(

h12w1 +h22w2

)

︸ ︷︷ ︸

β

(5)

From the above, we can infer thatβ ≈ 0, and y1(t) = αs1(t).
In Figure 1, we show empirically that maximizing (4) will
give β ≈ 0 when two super-Gaussian sources are syntheti-
cally mixed for 100 Monte Carlo trials, using a differentH
(randomly generated) in each trial.

2.3 The TMD anechoic mixing model with lag p

The head can be considered homogeneous in terms of acous-
tic properties as the acoustic impedance (I) of the skull and
that of the brain are approximately equal (Ibone≈ Ibrain≈
106) compared to that of air (Iair≈ 103) [7]. Therefore, most
of those multipaths will be refracted out of the head with a
negligible amount of attenuated reflections (echoes) within
the brain. Hence our anechoic model is reasonable. On the
other hand, the brain mean width is 0.16m in [8] while in
[9] it is 0.14 m. In our study, we consider the brain width to
be 0.15 m. Given that the speed of sound within the brain
is 1505 m/s [7], the lagp corresponds to 10−4s. In terms
of number of samples, this lag will be 10−4 × Fs, where Fs
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Figure 1: Values ofβ for 100 Monte Carlo trials. The small
value (< |0.015|) of β suggestsβ ≈ 0

is the sampling frequency (Hz). Since Fs in our study is 10
KHz, p = 1 sample lag. Due to this small lag, one may also
say that the TMD problem here can be formulated as an ins-
tantaneous source separation.

3. DEVELOPMENT AND ANALYSIS OF THE
PROPOSED FASTICA ALGORITHM

Recall our model (1) withH defined in (2). Earlier, we com-
puted the lagp = 1 for our constrained size medium (the
head). Hence, we delay x1(t) to yield x1(t-1) prior to the de-
termination of y1(t) . Therefore, FastICA performs the follo-
wing optimization:

y1(t) = arg sup
w1,w2

(

Neg(w1x1(t-1)+w2x2(t))
)

(6)

If we expand the arguments of equation (6), we have

y1(t) = w1x1(t-1)+w2x2(t)

= w1

(

h11s1(t-1)+h12s2(t-2)
)

+

w2

(

h21s1(t-1)+h22s2(t)
)

= s1(t-1)
(

h11w1 +h21w2

)

︸ ︷︷ ︸

γ

+

w1h12s2(t-2)+w2h22s2(t) (7)

If we assume y1(t) ≈ s2(t-2) + s2(t) (up to a scaling fac-
tor), then γ ≈ 0. Considerλ = w1h12 + w2h22 so that
w1h12s2(t-2)+w2h22s2(t) ≈ λs2(t). Besides, let us suppose
s2(t-2) ≈ s2(t); this assumption is reasonable in terms of ne-
gentropy, i.e. Neg(s2(t-2)) ≈ Neg(s2(t)) as t→ ∞. Hence,
y1(t) approachesλs2(t). We run 100 Monte Carlo trials to
show that optimizing (6) results inγ ≈ 0 and thatλ 6≈ 0 (as
illustrated in Figure 2 and Figure 3). We can also deduct that
(6) can be re-expressed as:

y1(t) = arg min
w1,w2

(

Neg(γs1(t-1))
)

+

w1h12s2(t-2)+w2h22s2(t)
︸ ︷︷ ︸

λs2(t)

(8)
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Figure 2: Values ofγ for 100 Monte Carlo trials. The small
value (< |0.016|) of γ hintsγ ≈ 0
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Figure 3: The values ofλ when 100 Monte Carlo trials were
run. On average, it can be deducted thatλ >> 0 indicates
λ 6≈ 0. The scaling ambiguity in ICA arises due toλ >> 0.

To extract a goodapproximation of s2(t), the key term is

argminw1,w2

(

Neg(γs1(t-1))
)

. It is in fact minimized by

FastICA (as shown in Figure 2).
At this point, note that y1(t) ≈ λs2(t). The second inde-
pendent component y2(t) will be a poor estimation of the
second source. FastICA will search for another vectorwb
orthogonal towa, while maximising (6).

y2(t) = s1(t-1)
(

h11w1 +h21w2

)

+h12w1s2(t-2)+

h22w2s2(t) (9)

Note that new values of w1 and w2 are computed forwb. Re-
call that the mixture signal x1(t) was delayed by one sample,
i.e. x1(t-1). This data manipulation is also equivalent to de-
laying s1(t) in x1(t) by 1 sample. Consequently, the align-
ment of s1(t-1) in both mixture signals, i.e. x1(t) and x2(t)
is achieved. This alignment has enabled FastICA to optimize
equation (8). But, in estimating s1(t), FastICA will have to
optimize:

y2(t) = arg min
w1,w2

(

Neg(w1h12s2(t-2)+w2h22s2(t))
)

+

γs1(t-1) (10)

Owing to the misalignment of s2(t-2) and s2(t) in minimizing
Neg(.) in (10), a poor estimation of s1(t) will ensue. It is
desired thatλ ≈ 0 to extract a good estimate of s1(t-1). On
the other hand,γ conveys the scaling ambiguity of s1(t-1).
As mentioned earlier, the misalignment of s2(t-2) and s2(t)
in (10) will not necessarily fulfil the conditionλ ≈ 0. 100
Monte Carlo simulations (shown in Figure 4) to evaluateλ
supports this statement.
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Figure 4: Values ofλ for 100 Monte Carlo trials. The occu-
rence of non-zero values ofλ suggestsλ 6≈ 0. Compare with
Figure 2
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Figure 5: The values ofγ for 100 Monte Carlo trials. Here,γ
conveys the scaling ambiguity prevailing in ICA.

From these simulations, it is clear that the second inde-
pendent component y2(t) will still consist of s2(t) and s1(t).
Note that the latter is the dominant component in y2(t)
due to the higher values ofγ as illustrated in Figure 5.
Therefore, we cannot estimate s1(t) with the mixture matrix
X = [x1(t-1) x2(t)]T . To overcome this, we simply consider
the lagged version of x2(t) by 1 sample, keeping x1(t) untou-
ched. Hence, the new mixture matrix isX = [x1(t) x2(t-1)]T .
However, this procedure will result in 4 independent compo-
nents, with only two of them being consistent estimations of
the true TMD sources. The selection of the correct pair of
independent components can be done by computing the mu-
tual information (MI) between any two pairs. The pair with



the minimum MI is picked as the right ones. It is understood
that MI is employed as a measure of statistical independence.

The algorithm presented herein can be summarized as
follows:
1. Estimate the lagp
2. Randomly initialize the mixing matrixH
3. Delay x1(t) by p samples
4. Utilize x1(t-p), x2(t) & H as inputs to the FastICA algo-

rithm. This will yield y1(t) and y2(t).
5. Similarly, repeat steps (3)-(4) with x2(t) delayed to

x2(t-p) instead of x1(t). Consider the pair of independent
components obtained at this step to be yA(t) and yB(t).

6. Measure the MI between y1(t) & yA(t), y1(t) & yB(t), y2(t)
& yA(t), and y2(t) & yB(t).

7. Select the pair with minimum MI.
8. If MI of the selected pair≥ criterion, go back to step (2).

Otherwise, the pair of independent components are the
estimates of TMJ sources.

The last step (i.e. mutual information≥ threshold/criterion)
guarantees that the best estimates of the TMD sources are
achieved since the performance of the FastICA may vary ac-
cording to initialization of the mixing matrixH. In theory,
MI = 0 when two sources are statistically independent, but
in practice, the citerion= 0.1 was set. Thus, the algorithm
ends when MI< 0.1.

4. SIMULATIONS

The following scenario is considered:

The displacement of the discs holding the mandible
and the temporal bone gives rise to clicks. Moreover,
the assumption that one temporomandibular joint is more
‘damaged’ than the other is made. In other words, both
the soft and hard TMJ sources are present. Furthermore,
these TMJ sources (when measured separately) were mixed
synthetically by the randomly generated matrixH:

H =

(

−0.3031 −0.4220z−1

0.1426z−1 −0.2030

)

In the first place, we show the TMJ sources and their ane-
choic mixtures in Figure 6. Moreover, the four independent
components (ICs) evaluated by FastICA when we delayed
one of the mixture (one at a time) signals by 1 sample, are
illustrated in Figure 7. Besides, we emphasize that an ane-
choic model with a sample lag ofone cannot be formula-
ted as an instantaneous BSS. These are shown in Figure 8.
Last but not least, we use Parra’s algorithm [5] and the time-
frequency approach of̈Ozg̈ur and Rickard [6] to compare
with our results. Their TMJ source estimates can be seen
in Figure 9.

Remarks: For each simulation of the BSS algorithms, the
first estimate is considered to be soft click and the other es-
timate as hard click. Besides, only the first two artefacts
are highlighted for neatness purpose. In the two lower plots
of Figure 8, it is obvious that each of the estimates of the
sources still has ‘artefacts’. Thus, an anechoic mixture of1
sample lag cannot be formulated as an instantaneous BSS.

Table 1: The table below summarizes the performances of
the algorithms.

Algorithm Signal-to-interference ratio/dB
Time delayed mixture method 74.14

Instantaneous FastICA 48.20
Parra’s algorithm 26.50

Time-Frequency Approach 17.61
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Figure 6: From top to bottom: soft click, hard click sources
and their TMJ anechoic mixtures.

We can remark similar observations, regarding the estimates
of Parra’s algorithm [5] and those ofÖzg̈ur and Rickard [6]
in Figure 9. Table 1 summarizes the performance of those
algorithms in terms of signal-to-interference ratio (SIR)for a
quantitative analysis.

5. CONCLUSION

In this work, anechoic BSS of TMJ sources has been addres-
sed. We have taken advantage of our geometrically constrai-
ned medium by pre-calculating the lag of 1 sample. Simi-
larly, we have demonstrated the potential of considering the
delayed versions of the mixture signals to solve this TMD
problem. For clinical diagnosis of TMD and an accurate clas-
sification of the abnormalities, minor artefacts (commonly
seen in conventional BSS algorithms) are absent in the source
estimates of our method. This is why we havevisually de-
monstrated the estimates of our method, compared to those
of Parra [5],Özg̈ur & Rickard [6], and against the instanta-
neous FastICA. Mutual information employed as a classifi-
cation criterion has proved successful in selecting the correct
pair independent components in the final stage of our algo-
rithm. However in our study, we had to perform data mani-
pulation (delay of the mixture signals) prior to using the ins-
tantaneous ICA algorithm. This was to compensate the lack
of knowledge of FastICA about the anechoic model. Further
work will be done on the development of a BSS algorithm
that already assumes an anechoic model to leapfrog the data
manipulation step to tackle this TMD BSS problem.
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Figure 7: From top to bottom: y1(t), y2(t), yA(t), and yB(t)
are the ICs evaluated by FastICA when one of the mixture
signals was alternately delayed by one sample.

6. ACKNOWLEDGEMENT

The authors would like to thank Dr. S. Rickard [6] from Uni-
versity College of Dublin and Dr. S. Hamerling [5] for their
matlab codes for simulation purposes.

REFERENCES

[1] T. Gay and C. N. Bertolami, “The spectral properties of
temporomandibular joint sounds,”Journal of Dental Re-
search, vol. 66, pp. 1189, 1987.

[2] R. J .M. Gray, S. J. Davies and A. A. Quayle,Tempo-
romandibular Disorders: A Clinical Approach, 1st Ed.
Address: British Dental Association, 1995.

[3] J. K. Leader, J. R. Boston and T. E. Rudy and C.M.
Greco, “Quantitative description of temporomandibular
joint sounds: defining clicking, popping, egg shell cra-
ckling and footsteps on gravel,”Blackwell Science Ltd,
Journal of Rehabilitation, vol. 28, pp. 466–478, 2001.

[4] A. Hyvarinen, J. Karhunen and E. Oja,Independent
Component Analysis. Address: John Wiley & Sons, INC,
2001.

[5] L. Parra and C. Spence, “Convolutive blind separation of
non-stationary sources,”IEEE Transactions on Speech
and Audio Processing, vol. 8, pp. 320–327, May 2000.
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Figure 8: The two upper plots show the reconstructed TMJ
sources (from top to bottom: yA(t) and y1(t)) of the delayed
mixture method. On the other hand, the lower ones demons-
trate the outputs of FastICA when we treated these anechoic
mixtures as instantaneous ones.
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Figure 9: The two upper plots show the estimates of Parra’s
algorithm [5], whilst the ones at the bottom are those of the
time-frequency approach of̈Ozg̈ur and Rickard [6].


