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ABSTRACT

In this paper we propose a model for multichannel audio
recordings that can be utilized for revealing the underlying
interchannel similarities. Thisisimportant for achieving low
bitrates for multichannel audio and is especially suitable for
applicationswhen thereisa large number of microphone sig-
nals to be transmitted (such as remote mixing or distributed
musicians collaboration). Using this model, we can encode a
multichannel audio signal using only one full audio channel
and some side information in the order of few KBits/sec per
channel, which can be used to decode the multiple channels
at the receiving end. WWe apply objective and subjective mea-
suresin order to evaluate the performance of our method.

1. INTRODUCTION

Multichannel audio offers significant advantages regarding
music reproduction when compared to stereophonic audio.
The use of alarge number of channels around the listener re-
sults in a more redlistic acoustic space, adding more sound
directions and thus immersing the listener into the acoustic
scene. By using a higher number of channels than in stereo
systems, multichannel audio recordings require higher data
rates for transmission. For multichannel audio, in addition to
reducing the intra-channel redundancies, methods have been
explored for reducing the inter-channel redundancies, such as
Mid/Side Coding [1], Intensity Stereo Coding [2], and KLT-
based methods [3]. This paper focuses on inter-channel re-
dundancies.

Although the multichannel audio coding algorithms men-
tioned in the previous paragraph result in reduction of the
dataratesrequired by the origina recording, they still remain
highly demanding for many practical applications when the
available channel bandwidth is low. This is especialy im-
portant given the fact that many multichannel audio systems
reguire even more than the 5.1 channels of currently popular
standards, and thus even higher data rates. In recent years,
the concept of Spatial Audio Coding has been introduced,
with the objective of further taking advantage of interchannel
redundancies in multichannel audio recordings. Under this
approach, the objective isto decode a (stereo or mono) chan-
nel of audio using some additional (side) information, so as
to recreate the spatial rendering of the original multichannel
recording. The side information is extracted during encod-
ing; in the most popular implementation of this approach,
Binaural Cue Coding (BCC) [4], the side information con-
tains the interchannel level difference, time difference, and

correlation. The resulting signal contains one full channel of
audio (downmix), along with the side information with bi-
trate in the order of few KBits/sec per channel.

Multichannel audio recordings are made using a large
number of microphones in a venue, resulting in numerous
microphone signals. These are then mixed in order to cre-
ate the finad multichannel audio recording. In many appli-
cations it would be desirable to transmit the multiple micro-
phone signals of a performance, before those are mixed into
the (usually much smaller number of) channels of the mul-
tichannel recording. Thiswould allow for remote mixing of
the multichannel recording, which is an important aspect for
many applications in the music industry. Remote collabo-
ration of geographically distributed musicians is a field of
great significance with extensions to music education and re-
search. Current experiments have shown that high data rates
are needed so that musicians can perform and interact with
minimal delay [5]. Remote mixing in the client side would
also enable the user to interact with the music in an unparal-
leled fashion, allowing him to create his own music by mix-
ing sounds as he pleases.

In this paper, we present a sourceffilter representation of
multichannel audio that allows for transmission of the multi-
ple microphone signals of a music performance with mod-
erate data-rate requirements. This would alow for trans-
mission through low bandwidth channels such as the cur-
rent Internet infrastructure or wireless networks for broad-
casting. Our method is tailored towards the transmission of
the various microphone signals of a performance before they
are mixed and thus can be applied to applications such as
remote mixing and distributed performances. Our innova
tive approach relaxes the current bandwidth constraints of
these demanding applications, enabling their widespread us-
age and more clearly revealing their value. Our method has
the same objective with Spatial Audio Coding, i.e. toreducea
multichannel recording into one full audio channel and some
side information of the order of few KBits/sec per channel.
However, it should be viewed as a generalization of BCC. In
BCC, the side information can be used to recreate the spatial
rendering of the various channels. In our method, the side
information can theoreticaly (as we explain next) recreate
the exact microphone signals of the multichannel recording.
In addition these microphone signals need not be the actual
channels of the recording but rather they can be the micro-
phone recordings (stem recordings) before those are mixed
into the final multichannel signal.
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2. RECORDING FOR MULTICHANNEL AUDIO

Before proceeding to the description of the proposed method,
a brief description is given of how the multiple microphone
signals for multichannel rendering are recorded. In this pa-
per, we mainly focus on live concert hall performances, a-
though thisdoes not result in aloss of generality of our meth-
ods. A number of microphones are used to capture severa
characteristics of the venue, resulting in an equal number of
microphone signal s (stem recordings). These signalsarethen
mixed and played back through amultichannel audio system.
Our objective is to design a system based on available mi-
crophone signals, that is able to recreate al of these target
microphone signals from a smaller set (or even only one) of
reference microphone signals at the receiving end. The re-
sult would be a significant reduction in transmission require-
ments, while enabling remote mixing at the receiving end. In
our previous work [6], we were interested to completely syn-
thesi ze the target signals using the reference signal's, without
any additional information. Here, we propose using some ad-
ditional information for each microphone for achieving high
quality resynthesis, with the constraint that this additional
information requires minimal datarates for transmission. By
examining the acoustical characteristics of the various stem
recordings, the distinction of microphones is made into re-
verberant and spot microphones.

Spot microphones are microphones that are placed close
to the sound source. Because the source of sound is not a
point source but rather distributed such as in an orchestra,
the recordings of these microphones depend largely on the
instruments that are near the microphone and not so much
on the hall acoustics. Resynthesizing the signals captured by
these microphones, therefore, involves enhancing certain in-
struments and diminishing others, which in most cases over-
lap in the time and frequency domains. Reverberant mi-
crophones are the microphones placed far from the sound
source, that mainly capture the reverberation information of
the venue. In our previous work [6], we showed that the re-
verberant recordings can be resynthesized from a reference
recording using specially designed LTI filters. Here, we fo-
cus on the spot microphone signals. Our objective is to de-
sign a system that recreates these signals from a smaller sub-
set of the microphone recordings.

In order to achieve low bitrates for audio coding, it is
generally considered necessary to introduce some trade-off
regarding the quality of the recording. Here we propose, in-
stead, a tradeoff regarding the accuracy of the final multi-
channel recording. We propose that it is possible to achieve
low bitrates by substituting some microphone signals with
others, which, athough differ acoustically, they however re-
tain the “objectives’ of the initial recording. Here, the term
“objectives’ corresponds to the main purpose for the micro-
phone placement in a particular position of the venue. If a
microphone was placed, for example, near the chorus of an
orchestra, then the main objective of the microphone place-
ment is to capture a recording of the music where the cho-
rus sounds as the most prevailing part with respect to the
remaining parts of the orchestra. If this microphone signal
is substituted by a different (i.e. resynthesized) one, which
again contains the same performance and the chorus is the

prevailing part of the new signal, thisis considered as asig-
nal that retains the “objective’ of the initial microphone sig-
nal. The term accuracy corresponds to the distance between
the two signals. Our methods result in a resynthesized sig-
nal that, although retains the “objective” of theinitial micro-
phone signal, it introduces a tradeoff between the required
bitrates and the accuracy achieved. In our previous example,
in the resyntheszied signal the choruswill still be the prevail-
ing part of the orchestra (thus the objective is retained), but
the other parts of the orchestra might be now more audible
than in theinitial signal (i.e. loss of accuracy). Subjectively,
thiswill have the effect that the new signal sounds asif it was
captured with a microphone that was placed farther from the
chorus compared with the microphone placement of the orig-
inal recording. However, since the objective is retained, the
resynthesized signal will still sound asif it was made with a
microphone placed close to the chorus. We claim that low
data rates can be achieved, without significant sacrifices re-
garding the accuracy of the multichannel recording.

3. MODEL AND MOTIVATION

Our proposed methodology, which is based on a multiband
source/ filter representation of the multiple microphone sig-
nals, consists of the following steps. Each microphone signal
is segmented into a series of short-time overlapping frames
using a sliding window. For each frame, the audio signal is
considered approximately stationary, and the spectral enve-
lope is modeled as a vector of linear predictive (LP) coeffi-
cients [7]. Under the source/filter model, the signal s(n) at
time n is related with the p previous signal samples by the
following autoregressive (AR) equation

s(n) =3P a(i)s(n—i)+e(n) (1)

where e(n) is the modeling error (residual signal), and p is
the AR filter order. In the frequency domain, thisrelation can
be written as

Py(0) = [A(0)| 2Ps(@) 2

where P(w) denotes the power spectrum of signal x(n).
A(w) denotes the frequency response of the AR filter, i.e.

A(w):l—zipzla(i)e*j“’i (©)]
The p + 1M-dimensiona vector al =
1, —a, —ap, -+, —ap|" is the low dimensional rep-

resentation of the signal spectral properties. If s(n) is an
AR process, the noise e(n) is white, thus a completely
characterizes the signal spectral properties. In the general
case, the error signal will not have white noise statistics and
thus cannot be ignored. In this general case, the all-pole
model that results from the LP analysis gives only an
approximation of the signal spectrum, and more specifically
the spectral envelope. For the particular case of audio sig-
nals, the spectrum contains only frequency components that
correspond to the fundamental frequencies of the recorded
instruments, and all their harmonics. The AR filter for an
audio frame will capture its spectral envelope. The error
signal istheresult of the audio frame filtered with theinverse
of its spectral envelope. Thus, we conclude that the error
signal will contain the same harmonics as the audio frame,
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but their amplitudes will now have significantly flatter shape
in the frequency spectrum.

Consider now two microphone signals of the same mu-
sic performance, captured by microphones placed close to
two different groups of instruments of the orchestra. Each
of these microphones mainly captures that particular group
of instruments, but also captures all the other instruments of
the orchestra. For simplification, consider that the orchestra
consists of only two instruments, e.g. aviolin and a trumpet.
Microphone 1 is placed close to the violin and microphone 2
close to the trumpet. It is true in most practical situations,
that microphone 1 will also capture the trumpet, in much
lower amplitude than the violin, and vice versa for micro-
phone 2. In that case, the signal s; from microphone 1, and
the signal s, from microphone 2 will contain the fundamen-
tals and corresponding harmonics of both instruments, but
they will differ in their spectral amplitudes. Consider a par-
ticular frame for these 2 signals, which corresponds to the
exact same music part (i.e. some time-alignment procedure
will be necessary to align the two microphone signals). We
model each of the two audio frames with the sourceffilter
model:

s(n) =3 a()s(n—i) +e&(n), k=12 (4

From the previous discussion it follows that the two residual
signals e; and e, will contain the same harmonic frequency
components. |f the envelope modeling was perfect, then it
follows that they would aso be equal (differences in total
gain are of no interest for this application), since they would
have flat magnitude with exactly the same frequency compo-
nents. In that case, we would be able to resynthesize each
of the two audio frames using only the AR filter that cor-
responds to that audio frame, and the residual signal of the
other microphone. If we used similarly this model for al the
spot microphone signals of a single performance, we would
be able to completely resynthesize these signals using their
AR vector sequences (one vector for each audio frame) and
theresidual error of only one microphone signal. Thiswould
result in agreat reduction of the data rate of the multiple mi-
crophone signals.

In practice, the AR filter is not an exact representation
of the spectral envelope of the audio frame, and the resid-
ual signals for the two microphone signals will not be equal.
However, we can improve the modeling performance of the
AR filter by using filterbanks. We divide the spectrum of
the audio signals and apply LP analysis in each band sepa
rately (subband signals are downsampled). A small AR fil-
ter order for each band can result in much better estimation
of the spectral envelope than a high-order filter for the full
frequency band. The multiband source/filter model achieves
a flatter frequency response for the residual signals. Then
we can use one of them for resynthesizing the other micro-
phone signals, in the manner explained in the previous para-
graph. However, the error signals cannot be made exactly
equal, thus the resynthesized signals will not sound exactly
the same as the originally recorded signals. This corresponds
to the loss of “accuracy” for the multichannel recording that
was discussed earlier. We claim that the use of the multiband
sourceffilter model results in audio signals of high-quality
which retain the “objective” of the initia recordings, in the

sense that was introduced here. In other words, the “main”
group of instruments that is captured still remains the promi-
nent part of the microphone signal, while other parts of the
orchestra might be more audible in the resynthesized signal
than in the original microphone signal. Returning to the ex-
ample of the two microphones and the two instruments, if we
usetheresidual of microphone 1 to resynthesize the signal of
microphone 2, then in the result the violin will most likely be
more audible than in the original microphone 2 signal. This
happens because some information of the first microphone
signal remains in the error signal, since the spectral enve-
lope modeling is not perfect. However, the trumpet will still
be the prominent of the two instrumentsin the resynthesized
signal for mic 2, since we used the original spectral informa-
tion of that microphone signal. Equally important is the fact
that the accuracy and the final audio quality the multiband
sourcef/filter model can be controlled with a variety a param-
eters. (1) the duration of the audio frames for each band,
(2) the AR order for each band, (3) the percentage of frame
overlapping, and (4) the total number of bands. By chang-
ing these parameters we can achieve various data rates with
the corresponding varying audio quality. Thus our systemis
quality scalable which is a significant property for the appli-
cations in mind. The appropriate values can be found exper-
imentally, while the choice of filterbank is a subject which is
currently under investigation.

It iseasy to verify experimentally that our claims hold for
other types of harmonic signals, e.g. speech signals. Some
types of microphone signals, such as percussive signals and
signals from reverberant microphones, present different chal-
lenges [6]. Here, we focus on the large class of audio signals
that can be modeled using short-time analysis with emphasis
on their spectral envelope.

4. RESULTSAND DISCUSSION

In this section, we show that the use of the proposed method
resultsin amodeled signal that is objectively and subjectively
very close to the original recording. For this purpose, we use
two microphone signals of a live concert hall performance.
One of the microphones captures mainly the male voices of
the chorus of the orchestra, while the other one mainly cap-
tures the female voices. These recordings are very easy to
distinguish acoustically. The objective isto resynthesize one
of these recordings using its corresponding low-dimensional
model coefficientsalong with theresidual of the other record-
ing.

From initial listening tests it has been clear that using
a number of bands around 8 for our model produced high
quality resynthesis without loss of the objective of the ini-
tial recording. For example, we have been able to resynthe-
size the male voices recording based on the residual from
the female voices. Without the use of a filterbank, the re-
sulting quality of the resynthesized signal greatly deterio-
rated with a complete loss of the recording objective. In
order to show this objectively, we measured the distance be-
tween the residual signals of the two recordings, using the
normalized mutual information as a distance measure. As
mentioned, the intuitive claim is that decreasing the distance
of the two residuals will increase the quality of the resynthe-
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Figure 1: Normalized Mutual |nformation between theresid-
ual signalsfrom the reference and target recordings asafunc-
tion of the number of bands of the filterbank, for various
Daubechies (db) filters.

sized recording. Our listening tests indicated that increasing
the number of subbands in our model, and consequently im-
proving the model accuracy, resulted in much better quality
of the resynthesized signals. While several measures were
tested, the normalized mutual information proved to be very
consistent in this sense.

The use of mutual information | (X;Y) asadistance mea
sure between random variables X and Y is very common in
pattern comparison. Since our interest isin comparing two
vectors X and Y (Y being the desired response), it is useful
to use a modified definition for the mutual information, the
Normalized Mutual Information (NMI) In(X;Y) whichisthe
mutual information normalized by the entropy of Y, so that
0 < Iy < 1. The NMI obtains its minimum value when X and
Y are statistically independent and its maximum value when
X =Y. The NMI does not constitute a metric since it lacks
symmetry, however it is invariant to amplitude differences
which is very important when comparing audio waveforms.

In Fig. 1 we plot the NMI between the power spec-
tra of the two residual signals with reference to the num-
ber of different subbands used, for different orders of the
Daubechies wavelet filters, which were used for our tree-
structured filterbank [8]. As aresult, our filterbank has the
perfect reconstruction property, which is essential for an
analysis/synthesis system, and also octave frequency-band
division, which is important since the LP agorithm is es-
pecialy error-prone in lower frequency bands. For our im-
plementation, we used 32" order L Pfilter for a 1024 sample
frame (corresponding to about 23 msec. for 44.1 kHz sam-
pling rate) for the full band analysis. For the subband analy-
sis, we used an 8" order filter for each band, with a constant
frame rate of 256 samples for each band (thus varying frame
in msec.). The amount of overlapping for best quality was
found to be 75% for all cases. These parameters were cho-
sen so that the total number of transmitted coefficients for
the resynthesized recording remains the same for both the

[ ABX-1 [ ABX-2 | ABX-3
Resultscorrect | 86% | 63% | 10%

Table 1: Results from the ABX listening tests.

full band and the subband cases. For the particular number
of parameters used, the total number of coefficients used for
the resynthesisis eight times|less than the total number of au-
dio samples. The coefficients that we intend to code for each
microphone signal are the line spectral frequencies (LSF's)
given their favorable quantization properties.

The NMI values in Fig. 1 are median values of the seg-
mental NMI between the two residual signals using an anal-
ysiswindow of 6 msec. Theresidual signals are obtained us-
ing an overlap-add procedure so that they can be compared
using the same analysis window. Our claim, that using a sub-
band analysis with a small LP order for each band will pro-
duce much better modeling resultsthan using ahigh LP order
for the full frequency band, is greatly justified by the results
shown. For the full band analysis we obtain a NMI value
of 0.0956 while for a 8-band filterbank the median NMI is
0.5720 (40" order wavelet filters). In Fig.1 we plot the me-
dian NMI for different orders of the Daubechies filters. We
can seethat increasing thefilter order resultsin slightly better
results. Intuitively this was expected; an increase in the filter
order resultsin better separation of the different bands, which
is important since we model each subband signal indepen-
dently of the others. In a similar experiment, we compared
the residua signals in the time-domain and found that the
median NMI doubles when using the 8-band system when
compared to the full-band case. The results for both the fre-
guency and time domains are similar regardless of the anal-
ysiswindow length for obtaining the NMI segmental values.
When increasing the window size the NMI drops, which is
expected since more data are compared. However, the de-
creaseis similar for the various numbers of bands we tested.

In order to test the performance of our method, we also
employed subjective (listening) tests, in which a total of 17
listeners participated (individualy, using good quality head-
phones). We used the two concert hall recordings from the
same performance as mentioned earlier (one capturing the
male voices and one capturing the female voices of the cho-
rus). We chose three parts of the performance (about 10 sec.
each, referred to as Signals 1-3 here) where both parts of
the chorus are active so that the two different microphone
signals can be easily distinguished. For each signal we de-
signed an ABX test, where A and B correspond to the male
and female chorus recording (in random order), while each
listener was asked to classify X as being closer to A or B re-
garding asto whether the male or female voices prevail in the
recording. Wetested 3 different types of wavel et-based filter-
banks, namely 8-band with filters db40 (test ABX-1) and db4
(ABX-2), and 2-band with db40 (ABX-3). For each of these
3 tests, we used al three of the chosen signals, thus atotal of
9 ABX testswas conducted per listener. Theresultsare given
in Table 1. We can conclude that the objective results, aswell
asthe various claims made in the previous sections regarding
the model, are verified by the listening tests. It is clear that
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Figure 2: Results from the quality rating listening tests.

the 8-level wavelet-based filterbank produces excellent re-
sultswhen aliasing is limited (i.e. db40 case), although there
is certainly room for improvement and further enhancement
to our model is currently underway. On the other hand, when
dliasing is high or when the number of bands (and thus the
modeling accuracy) drops, the performance of the proposed
method greetly deteriorates, not only in the sense of enhanc-
ing the male voices, but also regarding final quality (which
most listeners noticed during the experiments). At this point
we note that we obtained very similar results (using the NM|
aswell asinformal listening tests) with a Laplacian pyramid
filterbank, which is a different type of octave-spaced filter-
bank [9]. The choice of filterbank and whether octave-spaced
filterbanks are indeed better for our model is a subject of our
ongoing research.

We aso conducted DCR-based (Degradation Category
Rating) [10] listening tests for evaluating the quality of the
resynthesized signalsusing a5-grade scalein referenceto the
original recording (5 corresponding to being of same quality,
and 1 to the lowest quality, when compared with the original
male chorus recording). Subjects listened to the three sound
clips (Signas 1-3), where the resynthesized signals were
obtained using the best modeling parameters (8-level db40
wavelet-based). The results are depicted in Fig. 2, where
graphical representations of the 95% confidence interval are
shown (the x’s mark the mean value and the two horizon-
tal lines indicate the confidence limits). These results show
clearly that the resynthesized signals are of high quality and
the model does not seem to introduce any serious artifacts.
It is important to note that we are currently working on the
coding part based on our model. Our initial experiments have
shown that bitrates in the order of 10 KBits/sec per channel
are possible regarding the side information for good quality
audio. However, these are only preliminary results, and we
are confident that the bitrates can be further reduced.

5. CONCLUSIONS

A multiband sourceffilter model for multichannel audio was
proposed, which can be used for resynthesizing the multi-
ple microphone signals before they are mixed, and is thus

tailored towards applications such as remote mixing and dis-
tributed musicians collaboration. The main advantage of the
model isthat it separates each microphone signal into alow-
dimensiona signal which mainly captures the microphone-
specific properties, and a high-dimensional signal which
mainly contains the interchannel similarities. Our model can
result in amultichannel audio coding scheme where only one
audio channel, along with side information of few KBits/sec
per channel, can be decoded into the multiple channels of the
original recording. The authors wish to thank the listening
tests volunteers, and Prof. Kyriakakis of USC for his contin-
ued support of the project.
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