14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

SEPARATION OF INSTANTANEOUS MIXTURES OF CYCLOSTATIONARY
SOURCES WITH APPLICATION TO DIGITAL COMMUNICATION SIGNALS

Pierre Jallon and Antoine Chevreulil

Equipe signal et communications
Institut Gaspard Monge - UMR 8049
Universié de Marne la Vaéle
5, boulevard Descartes
77454 Marne La Va#le Cedex 2

ABSTRACT may not fit certain contexts; besides, the cyclic statistiay
In this contribution, we provide a simple condition on thebe numerically inconsistent (this is in particular the clse
statistics of the source signals ensuring that the Comon atfigital communication sources [13]). In [6], a second-orde
gorithm [2], originally designed for stationary data, asfés  based method is presented which achieves the separation of
the separation of an instantaneous mixture of cyclostation mixture of general non-stationary data (not necessarity cy
sources. The above condition is analyzed for digital comelostationary). This method however requires that 1) the
munications signals and is (semi-analytically) proved ¢o b source signal statistics do not vary too fast in regard o&tim
fulfilled. 2) the variations of the statistics are numerically sigaific
Again, this is not the case for digital communication signal
1. INTRODUCTION More interestingly, [7] investigates the behavior of th@®EA
; ; ; - algorithm when the data are cyclostationary; a sufficient co
The Blind Source Separation problems (BSS) have given rIS?ition is given which ensures that JADE achieves the separa-

to a wide literature due to a large set of pratical scenarios X
involving multi-sensors and multi-sources. A classic nodell0": When the source signals do not share the same non-null
stands as : _cycllc frequencies, this condition is autp_mancally fudfd;
y(n) = Hs(n) 1) in the general case, however, the condition provided by the

. R authors is not explicit (it depends on the eigenvalues of-a ce
wherey(n) is the multivariate observed data on an arrafbn  tain Hermitian operator).
sensorss(n) = [s1(n),---,s(n)]" is the unobserved source  |n this contribution, we focus on the Comon algorithm
signal ancH is the unknown mixing matrix. In the following, [2] when the data are cyclostationary (ECG signals, digital
we assume thatl is a full rankM x K matrix (thus imply-  communication signals, etc...). In Section 2, we provide a
ing that the number of sensors is bigger than the number @&fimple condition under which the Comon algorithm, as in
sources). A key assumption of BSS is to assume that thg stationary environment, performs BSS. In Section 3, we
components o$(n) are are mutually independent and one ofspecialize our analysis to digital communication sources a
the sources, at most, is Gaussian. BSS hence shifts to Iprove, semi-analytically, that the above condition issfiil,
dependent Component Analysis (ICA): settirig) = Gy(n)  making the Comon achieve BSS. Simulation results (Section
for anyK x M matrixG, the components af(n) are mutually  4) corroborate the above theoretical points.
independent if and only if (see [2])

GH—PD @) 2. THE COMON ALGORITHM IN A

CYCLOSTATIONARY CONTEXT

whereP is a permutation matrix and is a full rank diagonal ) ) ) )
matrix. The pioneering works assume that the source sig=0r @ given source indek, (sq(n))nez is by assumption a
nals are stationary sequences. Several block methods ha&¥clostationary sequence; in particular, its auto-catieh
been proposed: for example, the algorithm SOBI [4] is base§€quence evolves almost periodically as a function of time:
on the second-order statistics y(i) and assumes that the E{s,(n+ m)s(n)*} = ¥ qey, Réf)(m)ezm"’“ wherely is the
source signals have pair-wise different auto-correldtime-  set of (second-order) cyclic frequenciesspthence contain-
tions. Cardoso [1] and Comon [2] proposed fourth-order cuing 0). Due to the mutual independence of the sources, we
mulant based methods, leading to very efficient algorithmsgleduce that
such as JADE. D.T. Pham [9, 10] proposed a method based ,
on the mutual information. In[12, 11], a sequential apphoac E{y(n+m)y'(n)} = Z Ry (m)e?man ©)
is investigated (the so-callegkflation): in this method, the ag
inverse matrixG is computed row by row. Due to the well- T
known problem of cascading errors, we do not mention thig/herey’ (m) = [yj(n),---,yi(n)] andl = Ulk. Moreover,
kind of approach and we rather focus, in the sequel, on block
methods. R(ﬂ)(m) — lim lN_lE{y(n+m)yT(n)}e—2inan (4)

Several works address the BSS of non-stationary data. ~ ~ N—c N nZO
The standard SOBI algorithm naturally extends to cyclosta-
tionary contexts and in [5], an improvement of SOBI con-is the cyclic correlation coefficient gf(n) at the cyclic fre-
sists in taking into account the cyclic statistics: it ingpli quencya and at lagn. The first step of the Comon algorithm
itly requires the knowledge of the cyclic frequencies whichconsists in whitening the data, i.e. left-multiplyiggn) by
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a certainK x M matrix such that the resulting time-series (S). Trivially, (8) is an .equality whgnF is a permuta-
x() verifiesR)((O) (0) = Ik (if K:M,x(n):R§,0)(O)‘1/2y(n) tion. Conversely, if(8) is an equality, necessarily10)
goes). In other words, we may consider instead of (1) that thi an equality. This implies that the cross-products terms

model of the data is rather fiky fiko /[0, Pk, | @re O for every i=1,....K and k # ko.
If none of the pis zero, this latter condition makes the ma-
x(n) = Us(n) (5) trix F have only one non-null coefficient on each rowFAs

unitary, this proves thaF is a permutation times a diagonal
whereU is a unitary matrix and the componentssfh) all ~ matrix with entries of modulus. If one of the sources (say
; =0 qy _ . thefirst one) is such thatb= 0, thenF has two coefficients
zi\gesaormahzed average power, iRy (0) = 1 for all in at most on the i-th row - say at positiodsand o (i) - and
.... fi o(iy[B][bi|2. This term being equal
2.1 Firstapproach to 3 |bi|2 and as|fi1,,(i)|2 <1, it finally yields|fi1,,(i)|2 =1,
The BSS problem is to find the unitary mattior its inverse  henceF has exactly one non-null component of monullus
U' up to indeterminacies. In [2], the functign |c4(ri(n))|2, on every row: this means th&tis essentially equal ttJ'.
wherer (n) = Vx(n), andca(ri(n)) is the fourth-order auto- 20 A listi h
cumulant of the random variabfe(n), is introduced and its 24 A Mmore realistic approac
maximization over the unitary matricés is discussed. In In practice, Result 1 is difficult to exploit. This is due tath
contrast, the cyclostationary assumption on the data makesquirement of finding a consistent estimate of functién
the quantitiesca(ri(n)) depend on the time-lag, and its Let us specify this point.
maximization at every lagn would involve a time-varying The averaged fourth order cumulantrgfn) can be ex-
system. Now, we want a method that achieves the “inverpanded as:
sion” of equation (5) by means of a constant matrix. ) )
This requirement implies that the dependency of the(ca(ri(n))) = (E{|ri(n)[*}) —2((E{|ri(n)[?}) ") — (|E{(ri(n))?}|")
statistics of the data on the time index has to be remove
For instance, we consider in this section

dI‘he source signals being second-order complex circular, th
third term of the right-hand-side of the above equation can-

K cels out. From the symmet®f®(0) = (R (0))  and the
W) = ‘ZKC“(“(”)»'Z’ ©  parseval equality, it finally yields ( )
1= ’
This function coincides with the Comon objective one when(ca(ri()) = (E{[ri(m)[*}) —2/RiY(0)2 4 > IR (0)2
the sources are stationary up to the fourth-order. The sourc acly

signals being mutually independent, and the cumulant multi
linear, (6) writes

E{nmh-2-4 Y RPOF  11)

C{ElJr

K 2

2

k=1

K wherel ] is the set of the strictly positive cyclic-frequencies
(7)  of the sources. A consistent estimate of (11) is simply

W(r) =
i; i 4 2,2 2
W) = (MmN =2 =4 5 [{ri(n)[%e """ (12)
whereby = (c4(s¢)) and{ f; } are the coefficients of the ma- I U;i I
trix F = VU. We have

fi | *bx

where N denotes the number of data and(n))y =

Result 1 If at mostone of the Ris zero, then LsN-1y(n). The second term of (12) clearly requires the
. knowledge of the cyclic frequencies - or at least an accurate
for any unitaryV, W(Vx) < W(s) (8)  estimate of them. We have specified in the Introduction that
) . o _ such an assumption is incompatible with some contexts. As a
with equality if and only iV is essentially equal t&J". consequence, it is not possible in general to estirttaten-

é;istently. An idea consists in merely dropping the thirdrter

Proof 1 As similar arguments are needed in Section 2.2, w in (12). In other words, one may rather consider the estimate

may recall briefly why this result holds. We have:
K
- 2
&) =3 [(ri(m*Hn-2
2 I |

and run the maximization over unitary matricés Now,

2
WFs) < > <Z|fiAk|4|bk|> ©)
|
®(Vx) does not in general converges ¢gVx) but to the

4
Y (Zﬁi,klzv |bk|> (10)  function® defined by
|

K
N 2
The right hand side o{10) may be rewritten ag| Fb |3 o) = ZKE{“'("‘)‘ 3 -2 (13)

T 1=

whereF; ; = | fi x|? andb(¥/2) = {~/|b1|,...,\/|bK|} . Since 2
F is unitary, the matrixF is bi-stochastic. A consequence of
the Birkhoff theorem is thatFb(/2)||4 < ||b(/2)||4. Hence i aeTt
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which only coincides with (6) when the sources are all wide-

sense stationary. It remains to prove that the maximization

of function ® given by (13) is achieved if and only ¥ is 4

essentially equal tt*. We investigate this point. ®(Fs) = IZ Z|fi~,k| |Zk|+4k;<
17-K2

2
fiy fi.,k22/\k1.k2|>

Remark 1 Running the Comon algorithm with our data (al- K
though the algorithm was originally designed for statiopar ZI (Z
data) is nothing different than implementing the maximiza- i=

tion of function®. In other words, if the functio®(r) is a K
shown to be contrast function in a cyclostationnary context < Z\Zi |2. (20)
then the identification of the mixing mattikcan be done by i=

running this algorithm.

IN

4
fi,kIZ\/Tk|> (19)

Inequality (20) holds because the matiix= VU is

Taking (11) into accountp can be expanded as: unitary, and the equality is reached wh¥&his essentially
equal toUT. Conversely, (20) is an equality requires that
2 (19) is also an equality. This occurs iff for &ty # ko,

14) | fiol® (42 kol — /12 G,]) = 0. Due to Condition 1,
this is equivalent t& having a single non-null coefficient
on every row,i.e. F is the product of a permutation and a

K
S Hik*'a+4 S ikl fiio A ko
k=1 k17#ko

K
®(Fs) = Zl

where diagonal matrix with modulus one entries.
— (@) ()12
Q= (Calsc(m)) +4 ZI Rsc (0)] (15 3. APPLICATION TO DIGITAL COMMUNICATION
o<k CONTEXTS
and Results 2 and 3 are general and can be applied to any kind
Aky ko = Rgf’)(O) Ré: O’)(O). (16) of instantaneous mixtures of cyclostationary sourceshibi t
aer: ! 2 section we propose to apply these results in a digital commu-

nication context.
In general, Result 1 does not apply directly (compare (7) and We assume that the source signals result from a linear
(14)). We distinguish between two cases : modulation of i.i.d. sequences of complex circular symbols
Hence, thd&k—th component of the signa(n) can be written:
2.2.1 The non-null cyclic-frequencies are pair-wise diffe
ent (M =Y a(P)%ak(nTe— pTk) (21)

Result 2 if the sources have pair-wise distinct strictly posi- pes

is zero, then E{|ax(p)[?} = 1. We assume that these symbols are circu-
lar so that the signéad, « is also circular.gy is assumed to
be a square-root raised-cosine function. The siggglt) is

hence band-limited to— 5 2ok wherey is the excess
k k
bandwidth factor excess @ y < 1). The sampling period
L a) (—a) Te is supposed to satisfy the Shannon condition.
Indeed, in this gontext, the te"ﬁéﬁ (O)Rskz 0), for The discrete-time source sigreik then cyclostationary.
ki # ko are zero; this make® have the same expression as\joreover, any componest of shas at most 3 distinct cyclic

W - see Eq. (7) - except that thir are merely replaced by frequencies, i.e.ly = {—ay,0,ax}, whereay = Te/Ti [3].

for any unitaryV, ®(Vx) < ®(s) a7)

with equality if and only i/ is essentially equal t&.

the {x. The fact thatoy is not known means that the baudrate of the
k —th source is possibily unknown and that no prior estima-
2.2.2 The general case tion is needed to run the algorithm.
The termshi, i, = S gert R(sfl)(O) R(s;z“)(O) are are notnullin  Remark 2 The source signals may be corrupted by non zero
general. We have: frequency offsets. But since the statistics involved indGon
tion 1 only depends on the modulus of the source signals, the
Result 3 if frequency offset has no impact on the following results.
Condiition 1 V k; # ka, 4k, < v/ i) 3.1 Sources with pair-wise different baudrates
This condition on the baud-rates implies that the non-null
then, for any unitary matri¥/, positive cyclic frequencies are pair-wise different; heRe-
sult 2 applies, and the Comon algorithm is expected to con-
d(Vx) < D(s) (18)  verge to a certain matri¥, supposedly close td" (up to the
classical indeterminacies). We emphasize the fact that thi
with equality if and only iV is essentially equal t&J™. result holds as long as at most one of fheis zero. This

condition is analyzed in the next section, and we prove that
If Condition 1 is satisfied, we have: it is satisfied in a digital communication context.
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3.2 General configuration of the baudrates !
Notice that condition 1 is not very tractable in general, we os- 8
propose to replace it by a stronger condition :

0.8
Condition 2 miny || > 4max R (0)|2 o7l

The fact that a source has at most one cyclic-frequency os
makes thad, k, in (16) has at most one term. Moreover, we

have, for anyky, ko: Ay, Kk, < ma>q<|Rgf"‘>(O)\2. Hence Condi-

0.5

tion 2 implies Condition 1 and is much simpler to evaluate. ©°4 w
Condition 2 is naturally satisfied for a given conf;guraﬂon 0ol | M ;’ngmsg'fs“g""m
of the sources if we show that the upper bound|52§?f (0)2 A constetiatn

over a class of modulations is less than the inferior bound °?
of |{x| over the same set of modulations. For each kind of ,,| i
signal of this set of modulations, the index of the source is
irrelevant, and it is not mentioned in order to simplify the 702 05 04 o5 o5 o7 o5 os 1

notations. According to the previous notations, we set for v
the sources ) ) .
Figure 1:¢ for a set of linear modulation
Oa its shaping filter
{ap}pez its symbol sequence
; As g, is known (its a square-root raised-cosine function),
T its symbol rate ; X
. . we are able to computk analytically :
y its excess bandwith
) — R(a) 2 2 2
IR (0)] ) 3 (X) < <1> (25)
¢ = (ca(s(n)))+4A = (E[s(n)|") —2 n n
Lemma 1 If A similar way is possible to expregs:
Teg<T L (22)
e ) 27 37 3 )

1/ 2
- (—can)r [ labrdra(L) o)
the numberg andA do not depend on the sampling period — T
Te; moreover . .
e We have not been able to express analyticélds a function

1 /T _ 2 |1 e _ 2 of y. Notice that agia(+) does not depend dh, { does not
A= ‘T/ Esa(t)|2e2m%dt‘ = ‘T/ |ga(t)|2e2'm/Tdt‘ depend off .
0 - 23) || is numerically computed for a set of modulation on
and figure 1:
L 1 e e |{| > 0 which ensure that the condition discussed in sec-
calsii = = [ calsa(t)dt = c 7/ )14t tion 3.1 is satisfied
(Cals)) T/o 4(%(0) 4(an)T —o %0 o |{|> % which ensures that Condition 2 (hence Condi-
(24) tion ;) is satisfied for any mixture of PSK and QAM sig-
We recall briefly why this result holdst:— c4(sa(t)) is nals if there is no #-QAM (r> 2)osource with an excess
a periodic function of perio@, and can thus be developed in ~ Pand-width factor exceeding 70%.
Fourier series: For such mixtures, the maximization of the Comon objective

. function® achieves the separation of the sources.
Ca(Salt)) = chez'"“”

3.3 Extension to mixture of CPM signals
Wherec are the Fourier coefficients. As(t) is a band-  This kind of modulation is widely used, due to the constant

limited signal,/ci| = 0 if |I| > 3 [8]. Hence : modulus property of the emitted signal. Indeésn)| = 1
i/ T for everyn € Z. The assumption of circularity used along
(Ca(sa(nTe)) = ; ¢ (emTe/T) the paper is always satisfied for CPM signals except if the
<3 modulation index equals/2 (or a multiple): this case is not
o . . considered.

As long asTe satisfies (22)(e”™'T/T) = 0 if | # 0. Hence, The constant modulus of(n) makesE{|s(n)[2} = 1

(Ca(sa(nTe)) simplifies toco. Thanks to (21)Ca(sa(t)) =  whatevern (this does not mean tha{n) is not a cyclo-

C4(an) Ynez [Ga(t —nT)[* andco = ca(an) F [z [ga(t)[*dt. A stationary sequence sind{s(n-+ m)s(n)} depends on the

similar proof holds foA. time indexn in general). Due to (3), we simply deduce that

In the sequel, we assume tha,verify (22). Of course, A(sc) =0 and{(sc) = 1. In particular, this means that for a
this has no implication in a real scenario, since the prdbabi mixture of non-filtered CPM signals, Condition 1 is always
ity of choosing such a sampling period is 1. satisfied.
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In a more realistic scenario, the transmitted CPM signals *®
are filtered in order to enhance their spectral efficiency-Ne
ertheless, since the constant modulus property is a key prop
erty, the filtering slightly affects this property and hertlce 8o~
values of¢ andA.

70

4. SIMULATION RESULTS 60|

If c1 (n) the contribution of th&-th source on thé-th sensor s0-
at timen, we may compute the estimated contributiRp(f) wl
thanks to the estimates of the sources provided by a BSS al-

gorithm. The performance criterion for theth source is a0

defined as:
_ € <|éq7k(n>_c%k<n)‘2>N 10
@ =2 P
% (Icgk(M)n (|Eqk(n) — Cqx(M))n
|

2 2
& ImEn {[Cax(mEn Figure 2: Performances of different versions of the Comon

whereN is the number of available samples. The global cri-&/g0rithm

terion of performance is defined as the mearCaf...,Cqo.

We recall thaty(n) is the observed sequence on serksor
We propose to average this criterion on 100 trials. Th
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