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ABSTRACT
In this contribution, we provide a simple condition on the
statistics of the source signals ensuring that the Comon al-
gorithm [2], originally designed for stationary data, achieves
the separation of an instantaneous mixture of cyclostationary
sources. The above condition is analyzed for digital com-
munications signals and is (semi-analytically) proved to be
fulfilled.

1. INTRODUCTION

The Blind Source Separation problems (BSS) have given rise
to a wide literature due to a large set of pratical scenarios
involving multi-sensors and multi-sources. A classic model
stands as :

y(n) = Hs(n) (1)
wherey(n) is the multivariate observed data on an array onM
sensors,s(n) = [s1(n), · · · ,sK(n)]T is the unobserved source
signal andH is the unknown mixing matrix. In the following,
we assume thatH is a full rankM ×K matrix (thus imply-
ing that the number of sensors is bigger than the number of
sources). A key assumption of BSS is to assume that the
components ofs(n) are are mutually independent and one of
the sources, at most, is Gaussian. BSS hence shifts to In-
dependent Component Analysis (ICA): settingr(n) = Gy(n)
for anyK×M matrixG, the components ofr(n) are mutually
independent if and only if (see [2])

GH = P D (2)

whereP is a permutation matrix andD is a full rank diagonal
matrix. The pioneering works assume that the source sig-
nals are stationary sequences. Several block methods have
been proposed: for example, the algorithm SOBI [4] is based
on the second-order statistics ofy(n) and assumes that the
source signals have pair-wise different auto-correlationfunc-
tions. Cardoso [1] and Comon [2] proposed fourth-order cu-
mulant based methods, leading to very efficient algorithms
such as JADE. D.T. Pham [9, 10] proposed a method based
on the mutual information. In [12, 11], a sequential approach
is investigated (the so-calleddeflation): in this method, the
inverse matrixG is computed row by row. Due to the well-
known problem of cascading errors, we do not mention this
kind of approach and we rather focus, in the sequel, on block
methods.

Several works address the BSS of non-stationary data.
The standard SOBI algorithm naturally extends to cyclosta-
tionary contexts and in [5], an improvement of SOBI con-
sists in taking into account the cyclic statistics: it implic-
itly requires the knowledge of the cyclic frequencies which

may not fit certain contexts; besides, the cyclic statisticsmay
be numerically inconsistent (this is in particular the casefor
digital communication sources [13]). In [6], a second-order
based method is presented which achieves the separation of
mixture of general non-stationary data (not necessarily cy-
clostationary). This method however requires that 1) the
source signal statistics do not vary too fast in regard of time
2) the variations of the statistics are numerically significant.
Again, this is not the case for digital communication signals.
More interestingly, [7] investigates the behavior of the JADE
algorithm when the data are cyclostationary; a sufficient con-
dition is given which ensures that JADE achieves the separa-
tion: when the source signals do not share the same non-null
cyclic frequencies, this condition is automatically fulfilled;
in the general case, however, the condition provided by the
authors is not explicit (it depends on the eigenvalues of a cer-
tain Hermitian operator).

In this contribution, we focus on the Comon algorithm
[2] when the data are cyclostationary (ECG signals, digital
communication signals, etc...). In Section 2, we provide a
simple condition under which the Comon algorithm, as in
a stationary environment, performs BSS. In Section 3, we
specialize our analysis to digital communication sources and
prove, semi-analytically, that the above condition is satisfied,
making the Comon achieve BSS. Simulation results (Section
4) corroborate the above theoretical points.

2. THE COMON ALGORITHM IN A
CYCLOSTATIONARY CONTEXT

For a given source indexk, (sk(n))n∈Z is by assumption a
cyclostationary sequence; in particular, its auto-correlation
sequence evolves almost periodically as a function of time:

E{sk(n+ m)sk(n)∗} = ∑α∈Ik R(α)
sk (m)e2iπαn where Ik is the

set of (second-order) cyclic frequencies ofsk (hence contain-
ing 0). Due to the mutual independence of the sources, we
deduce that

E{y(n+m)y†(n)} = ∑
α∈I

R(α)
y (m)e2iπαn (3)

wherey†(m) = [y∗1(n), · · · ,y∗K(n)] andI = ∪kIk. Moreover,

R(α)
y (m) = lim

N→∞

1
N

N−1

∑
n=0

E{y(n+m)y†(n)}e−2iπαn (4)

is the cyclic correlation coefficient ofy(n) at the cyclic fre-
quencyα and at lagm. The first step of the Comon algorithm
consists in whitening the data, i.e. left-multiplyingy(n) by

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



a certainK ×M matrix such that the resulting time-series

x(n) verifiesR(0)
x (0) = IK (if K = M, x(n) = R(0)

y (0)−1/2y(n)
goes). In other words, we may consider instead of (1) that the
model of the data is rather

x(n) = Us(n) (5)

whereU is a unitary matrix and the components ofs(n) all

have normalized average power, i.e.R(0)
sk (0) = 1 for all in-

dicesk.

2.1 First approach

The BSS problem is to find the unitary matrixU or its inverse
U† up to indeterminacies. In [2], the function∑i |c4(r i(n))|2,
wherer(n) = Vx(n), andc4(r i(n)) is the fourth-order auto-
cumulant of the random variabler i(n), is introduced and its
maximization over the unitary matricesV is discussed. In
contrast, the cyclostationary assumption on the data makes
the quantitiesc4(r i(n)) depend on the time-lagn, and its
maximization at every lagn would involve a time-varying
system. Now, we want a method that achieves the “inver-
sion” of equation (5) by means of a constant matrix.

This requirement implies that the dependency of the
statistics of the data on the time index has to be removed.
For instance, we consider in this section

Ψ(r) =
K

∑
i=1

|〈c4(r i(n))〉|2 . (6)

This function coincides with the Comon objective one when
the sources are stationary up to the fourth-order. The source
signals being mutually independent, and the cumulant multi-
linear, (6) writes

Ψ(r) =
K

∑
i=1

∣

∣

∣

∣

∣

K

∑
k=1

| fi,k|
4bk

∣

∣

∣

∣

∣

2

(7)

wherebk = 〈c4(sk)〉 and{ fi,k} are the coefficients of the ma-
trix F = VU. We have

Result 1 If at mostone of the bk is zero, then

for any unitaryV, Ψ(Vx) ≤ Ψ(s) (8)

with equality if and only ifV is essentially equal toU†.

Proof 1 As similar arguments are needed in Section 2.2, we
may recall briefly why this result holds. We have:

Ψ(Fs) ≤ ∑
i

(

∑
k

| fi,k|
4|bk|

)2

(9)

≤ ∑
i

(

∑
k

| fi,k|
2
√

|bk|

)4

(10)

The right hand side of(10) may be rewritten as‖ Fb ‖4
4

whereFi, j = | fi,k|2 andb(1/2) =
[

√

|b1|, ...,
√

|bK |
]T

. Since

F is unitary, the matrixF is bi-stochastic. A consequence of
the Birkhoff theorem is that||Fb(1/2)||4 ≤ ||b(1/2)||4. Hence

(8). Trivially, (8) is an equality whenF is a permuta-
tion. Conversely, if(8) is an equality, necessarily(10)
is an equality. This implies that the cross-products terms
fi,k1 fi,k2

√

|bk1bk2| are 0 for every i= 1, ...,K and k1 6= k2.
If none of the bk is zero, this latter condition makes the ma-
trix F have only one non-null coefficient on each row. AsF is
unitary, this proves thatF is a permutation times a diagonal
matrix with entries of modulus1. If one of the sources (say
the first one) is such that b1 = 0, thenF has two coefficients
at most on the i-th row - say at positions1 and σ(i) - and
||Fb(1/2)||44 = ∑i=2,...,K | fi,σ(i)|

8||bi |
2. This term being equal

to ∑i |bi |
2 and as| fi,σ(i)|

2 ≤ 1, it finally yields| fi,σ(i)|
2 = 1,

henceF has exactly one non-null component of modulus1
on every row: this means thatV is essentially equal toU†.

2.2 A more realistic approach

In practice, Result 1 is difficult to exploit. This is due to the
requirement of finding a consistent estimate of functionΨ.
Let us specify this point.

The averaged fourth order cumulant ofr i(n) can be ex-
panded as:

〈c4(r i(n))〉= 〈E{|r i(n)|4}〉−2〈
(

E{|r i(n)|2}
)2
〉−〈

∣

∣E{(r i(n))2}
∣

∣

2
〉

The source signals being second-order complex circular, the
third term of the right-hand-side of the above equation can-

cels out. From the symmetryR(α)
r i (0) =

(

R(−α)
r i (0)

)∗
and the

Parseval equality, it finally yields

〈c4(r i(n))〉 = 〈E{|r i(n)|4}〉−2|R(0)
r i (0)|2−4 ∑

α∈I∗+

|R(α)
r i (0)|2

= 〈E{|r i(n)|4}〉−2 −4 ∑
α∈I∗+

|R(α)
r i (0)|2 (11)

whereI∗+ is the set of the strictly positive cyclic-frequencies
of the sources. A consistent estimate of (11) is simply

Ψ̂(r) = 〈|r i(n)|4〉N −2 −4 ∑
α∈I∗+

|〈|r i(n)|2e−i2παn〉N|
2 (12)

where N denotes the number of data and〈u(n)〉N =
1
N ∑N−1

n=0 u(n). The second term of (12) clearly requires the
knowledge of the cyclic frequencies - or at least an accurate
estimate of them. We have specified in the Introduction that
such an assumption is incompatible with some contexts. As a
consequence, it is not possible in general to estimateΨ con-
sistently. An idea consists in merely dropping the third term
in (12). In other words, one may rather consider the estimate

Φ̂(r) =
K

∑
i=1

∣

∣〈|r i(n)|4〉N −2
∣

∣

2

and run the maximization over unitary matricesV. Now,
Φ̂(Vx) does not in general converges toψ(Vx) but to the
functionΦ defined by

Φ(r) =
K

∑
i=1

∣

∣〈E{|r i(n)|4}〉−2
∣

∣

2
(13)

=
K

∑
i=1

∣

∣

∣

∣

∣

∣

〈c4(r i(n))〉+4 ∑
α∈I∗+

|R(α)
r i (0)|2

∣

∣

∣

∣

∣

∣

2
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which only coincides with (6) when the sources are all wide-
sense stationary. It remains to prove that the maximization
of function Φ given by (13) is achieved if and only ifV is
essentially equal toU†. We investigate this point.

Remark 1 Running the Comon algorithm with our data (al-
though the algorithm was originally designed for stationary
data) is nothing different than implementing the maximiza-
tion of functionΦ̂. In other words, if the functionΦ(r) is a
shown to be contrast function in a cyclostationnary context,
then the identification of the mixing matrixU can be done by
running this algorithm.

Taking (11) into account,Φ can be expanded as:

Φ(Fs) =
K

∑
i=1

∣

∣

∣

∣

∣

K

∑
k=1

| fi,k|
4ζk +4 ∑

k1 6=k2

| fi,k1|
2| fi,k2|

2λk1,k2

∣

∣

∣

∣

∣

2

(14)

where

ζk = 〈c4(sk(n))〉+4 ∑
α∈I∗+

|R(α)
sk (0)|2 (15)

and

λk1,k2 = ∑
α∈I∗+

R(α)
sk1

(0)R(−α)
sk2

(0). (16)

In general, Result 1 does not apply directly (compare (7) and
(14)). We distinguish between two cases :

2.2.1 The non-null cyclic-frequencies are pair-wise differ-
ent

Result 2 if the sources have pair-wise distinct strictly posi-
tive cyclic frequencies; ifat mostone of theζk given by(15)
is zero, then

for any unitaryV, Φ(Vx) ≤ Φ(s) (17)

with equality if and only ifV is essentially equal toU†.

Indeed, in this context, the termsR(α)
sk1

(0)R(−α)
sk2

(0), for
k1 6= k2 are zero; this makesΦ have the same expression as
Ψ - see Eq. (7) - except that thebk are merely replaced by
theζk.

2.2.2 The general case

The termsλk1,k2 = ∑α∈I∗+
R(α)

sk1
(0)R(−α)

sk2
(0) are are not null in

general. We have:

Result 3 if

Condition 1 ∀ k1 6= k2, 4|λk1,k2| <
√

|ζk1ζk2|

then, for any unitary matrixV,

Φ(Vx) ≤ Φ(s) (18)

with equality if and only ifV is essentially equal toU†.

If Condition 1 is satisfied, we have:

Φ(Fs) = ∑
i

(

∑
k

| fi,k|
4|ζk|+4 ∑

k1 6=k2

| fi,k1|
2| fi,k2|

2|λk1,k2|

)2

≤
K

∑
i=1

(

∑
k

| fi,k|
2
√

|ζk|

)4

(19)

≤
K

∑
i=1

|ζi |
2. (20)

Inequality (20) holds because the matrixF = VU is
unitary, and the equality is reached whenV is essentially
equal toU†. Conversely, (20) is an equality requires that
(19) is also an equality. This occurs iff for allk1 6= k2,
| fk1 fk2|

2
(

4|λk1,k2|−
√

|ζk1ζk2|
)

= 0. Due to Condition 1,
this is equivalent toF having a single non-null coefficient
on every row,i.e. F is the product of a permutation and a
diagonal matrix with modulus one entries.

3. APPLICATION TO DIGITAL COMMUNICATION
CONTEXTS

Results 2 and 3 are general and can be applied to any kind
of instantaneous mixtures of cyclostationary sources. In this
section we propose to apply these results in a digital commu-
nication context.

We assume that the source signals result from a linear
modulation of i.i.d. sequences of complex circular symbols.
Hence, thek−thcomponent of the signals(n) can be written:

sk(n) = ∑
p∈Z

ak(p)ga,k(nTe− pTk) (21)

where {ak(p)}p are the transmitted symbols such that
E{|ak(p)|2} = 1. We assume that these symbols are circu-
lar so that the signalsa,k is also circular.ga,k is assumed to
be a square-root raised-cosine function. The signalsa,k(t) is
hence band-limited to[−1+γk

2Tk
, 1+γk

2Tk
], whereγk is the excess

bandwidth factor excess (0< γk < 1). The sampling period
Te is supposed to satisfy the Shannon condition.

The discrete-time source signals is then cyclostationary.
Moreover, any componentsk of shas at most 3 distinct cyclic
frequencies, i.e.Ik = {−αk,0,αk}, whereαk = Te/Tk [3].
The fact thatαk is not known means that the baudrate of the
k− th source is possibily unknown and that no prior estima-
tion is needed to run the algorithm.

Remark 2 The source signals may be corrupted by non zero
frequency offsets. But since the statistics involved in Condi-
tion 1 only depends on the modulus of the source signals, the
frequency offset has no impact on the following results.

3.1 Sources with pair-wise different baudrates

This condition on the baud-rates implies that the non-null
positive cyclic frequencies are pair-wise different; hence Re-
sult 2 applies, and the Comon algorithm is expected to con-
verge to a certain matrix̂V, supposedly close toU† (up to the
classical indeterminacies). We emphasize the fact that this
result holds as long as at most one of theζk is zero. This
condition is analyzed in the next section, and we prove that
it is satisfied in a digital communication context.
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3.2 General configuration of the baudrates

Notice that condition 1 is not very tractable in general, we
propose to replace it by a stronger condition :

Condition 2 mink |ζk| > 4maxk |R
(αk)
sk (0)|2

The fact that a source has at most one cyclic-frequency
makes thatλk1,k2 in (16) has at most one term. Moreover, we

have, for anyk1,k2: λk1,k2 ≤ maxk |R
(αk)
sk (0)|2. Hence Condi-

tion 2 implies Condition 1 and is much simpler to evaluate.
Condition 2 is naturally satisfied for a given configuration

of the sources if we show that the upper bound of 4|R(αk)
sk (0)|2

over a class of modulations is less than the inferior bound
of |ζk| over the same set of modulations. For each kind of
signal of this set of modulations, the index of the source is
irrelevant, and it is not mentioned in order to simplify the
notations. According to the previous notations, we set for
the sources :

ga its shaping filter
{ap}p∈Z its symbol sequence

T its symbol rate
γ its excess bandwith

λ = |R(α)
s (0)|2

ζ = 〈c4(s(n))〉+4λ = 〈E|s(n)|4〉−2

Lemma 1 If

Te /∈

{

T,
T
2

,
T
3

,
2T
3

}

, (22)

the numbersζ andλ do not depend on the sampling period
Te; moreover

λ =

∣

∣

∣

∣

1
T

∫ T

0
E|sa(t)|

2e2iπ t
T dt

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1
T

∫ ∞

−∞
|ga(t)|

2e2iπt/Tdt

∣

∣

∣

∣

2

(23)
and

〈c4(s(n))〉 =
1
T

∫ T

0
c4(sa(t))dt = c4(an)

1
T

∫ ∞

−∞
|ga(t)|

4dt

(24)

We recall briefly why this result holds :t 7→ c4(sa(t)) is
a periodic function of periodT, and can thus be developed in
Fourier series:

c4(sa(t)) = ∑
l

cl e
2iπ lt/T

Wherecl are the Fourier coefficients. Assa(t) is a band-
limited signal,|cl | = 0 if |l | > 3 [8]. Hence :

〈c4(sa(nTe)〉 = ∑
|l |≤3

cl 〈e
2iπnlTe/T〉

As long asTe satisfies (22),〈e2iπnlT/Tk〉 = 0 if l 6= 0. Hence,
〈c4(sa(nTe)〉 simplifies toc0. Thanks to (21),c4(sa(t)) =
c4(an)∑n∈Z |ga(t −nT)|4 andc0 = c4(an)

1
T

∫

R
|ga(t)|4dt. A

similar proof holds forλ .
In the sequel, we assume that,Te verify (22). Of course,

this has no implication in a real scenario, since the probabil-
ity of choosing such a sampling period is 1.
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Figure 1:ζ for a set of linear modulation

As ga is known (its a square-root raised-cosine function),
we are able to computeλ analytically :

λ =
( γ

π

)2
≤

(

1
π

)2

(25)

A similar way is possible to expressζ :

ζ = c4(ap)
1
T

∫ ∞

−∞
|ga(t)|

4dt+4
( γ

π

)2
(26)

We have not been able to express analyticallyζ as a function
of γ. Notice that asga(

t
T ) does not depend onT, ζ does not

depend onT.
|ζ | is numerically computed for a set of modulation on

figure 1:

• |ζ | > 0 which ensure that the condition discussed in sec-
tion 3.1 is satisfied

• |ζ | > 4
π2 which ensures that Condition 2 (hence Condi-

tion 1) is satisfied for any mixture of PSK and QAM sig-
nals if there is no 4r2-QAM (r > 2) source with an excess
band-width factor exceeding 70%.

For such mixtures, the maximization of the Comon objective
functionΦ achieves the separation of the sources.

3.3 Extension to mixture of CPM signals

This kind of modulation is widely used, due to the constant
modulus property of the emitted signal. Indeed,|s(n)| = 1
for everyn ∈ Z. The assumption of circularity used along
the paper is always satisfied for CPM signals except if the
modulation index equals 1/2 (or a multiple): this case is not
considered.

The constant modulus ofs(n) makesE{|s(n)|2} = 1
whatevern (this does not mean thats(n) is not a cyclo-
stationary sequence sinceE{s(n+ m)s(n)} depends on the
time indexn in general). Due to (3), we simply deduce that
λ (sk) = 0 andζ (sk) = 1. In particular, this means that for a
mixture of non-filtered CPM signals, Condition 1 is always
satisfied.
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In a more realistic scenario, the transmitted CPM signals
are filtered in order to enhance their spectral efficiency. Nev-
ertheless, since the constant modulus property is a key prop-
erty, the filtering slightly affects this property and hencethe
values ofζ andλ .

4. SIMULATION RESULTS

If ck,l (n) the contribution of thek-th source on thel -th sensor
at timen, we may compute the estimated contribution ˆck,l (n)
thanks to the estimates of the sources provided by a BSS al-
gorithm. The performance criterion for thek-th source is
defined as:

Cq =
K

∑
k=1

〈|ĉq,k(n)−cq,k(n)|2〉N

〈|yk(n)|2〉N

=
K

∑
k=1

〈|cq,k(n)|2〉N

〈|yk(n)|2〉N

〈|ĉq,k(n)−cq,k(n)|2〉N

〈|cq,k(n)|2〉N

whereN is the number of available samples. The global cri-
terion of performance is defined as the mean ofC1, ...,CQ.
We recall thatyk(n) is the observed sequence on sensork.

We propose to average this criterion on 100 trials. The
number of sources isK = 4 and the number of sensorsQ= 5.
For a given trial, the mixing matrix is randomly chosen. The
sources are randomly chosen in the set{QPSK,8−PSK};
the baud-rates are randomly chosen in{1,4/3} time-units,
and the excess bandwidth factors are also randomly chosen
in (0 , 1). The duration of an experiment is 800 time-units.
The sampling periodTe was chosen in accordance with the
Shannon sampling condition. Figure 2 shows the repartition
function of the performance criterion of different Comon al-
gorithms :
• when the cyclic frequencies are unknown from the re-

ceiver. The curve obtained is denoted by ”Maximisation
of functionΦ”

• when the temporal mean of the cumulants〈c4(r i(n))〉 es-
timated via Eq. (12) (the cyclic frequencies in this case
are supposed to be known by the receiver: though not
realistic, this gives a point of comparison). The curve
obtained is denoted by ”Maximisation of functionΨ”.

The conclusion is that the knowledge of the cyclic-
frequencies does not improve the results (i.e., taking into
account the extra-terms in (12) seems to impair the perfor-
mance).

5. CONCLUSION

We have given a simple condition on the statistics of the
(cyclostationary) sources which ensures that the maximiza-
tion of the Comon function (13) performs BSS. This condi-
tion does not depend on the number of sources and is semi-
analytically shown to be fulfilled in the context of digital
communications (mixtures of linear/CPM sources with any
baud-rates).
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