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ABSTRACT

We propose the design of multi-dimensional (m-D) complex-
valued FIR digital filters using the thoery of Projection onto
Convex Sets (POCS). The proposed design algorithm is a
generalization of the one-dimensional (1-D) real-valued FIR
filter design cases reported in [1, 2] to m-D complex-valued
FIR filters. Simulation results show that the resulting fre-
quency responses possess an approximate equiripple nature.
Also, they illustrate superior designs using POCS when com-
pared with the complex Remez filter design method previ-
ously reported in [3].

1. INTRODUCTION

Most of the existing FIR design techniques assume
zero/linear phase FIR filters which result in filters having
real-valued FIR coefficients. However, in certain applica-
tions, like the case of seismic migration filters, both the
magnitude and the phase responses need to be of even
symmetry and the phase is non-linear, and this results in
FIR filter coefficients being complex-valued [4, 3]. Also, a
low delay single passband filter is another example of the
need for complex-valued FIR filters [5].

Some researchers approach the problem of designing
filters with complex coefficients by expressing the desired
phase and magnitude responses as complex Cartesian com-
ponents and operate on the real and imaginary components
independently. Then, the final filter coefficients are formed
from the resultant real and imaginary coefficients [6].
Moreover, Chen-Parks [7] approximate the complex-valued
response by a real-valued function and the resulting errors
in magnitude and group delay are made approximately
equiripple. Their method, however, requires large computer
memory and the design-time increases exponentially with
increasing time and frequency grid-density [7, 2]. In another
development, Karam and McClellan [4, 3], have extended
the Parks-McClellan (Remez exchange) algorithm [8, 6]
for complex-valued FIR filter design. The simulation
results indicate that this algorithm is efficient in terms
of memory and speed convergence. However, as in the
case of the Remez exchange algorithm, it is not easy to
extend the algorithm to m-D FIR filter design. In addition,
more constraints cannot be incorporated into the design
specifications.

Recently, a novel iterative FIR filter design algorithm
was introduced (based on one forward and one inverse Fast
Fourier Transform (FFT)) to design zero-phase FIR filters
[1]. The algorithm alternately satisfies the frequency domain
constraints on the magnitude response bounds as well as
time domain constraints on the impulse response support
[1]. The main advantages of this method are based on its
implementation simplicity and versatility. This algorithm is
known as Projection onto Convex Sets (POCS). This idea

was similarly used in [9] for the design of arbitrary complex
frequency response. However, both algorithms were derived
heuristically without explicitly defining the constraint sets
properly and deriving their associated projections. In
addition, the heuristic nature of such approaches does
not obviously lend itself to the design of filters with other
constraints. Recently in [2], the proper mathematical way to
derive the design algorithm of real-valued linear-phase FIR
1-D filters using POCS was shown. The POCS theory leads
to a feasible solution which satisfies all predefined constraint
sets. The constraint sets are formulated as sets that are
closed and convex within a suitable Hilbert space [2]. In
[2] the Hilbert space was the M -dimensional Euclidean
space. Moreover, unlike many FIR filter design techniques,
the POCS approach for designing FIR filters can easily be
directly extended to the design of m-D filters. Furthermore,
for the case of designing FIR digital filters, the POCS will
require only two FFT computations per iteration [1].

Therefore, a novel algorithm for the design of m-D
complex-valued FIR digital filters using the method of Pro-
jections onto Convex Sets (POCS) is derived in this paper.
This is achieved by extending the work carried out for de-
signing 1-D real-valued FIR digital filters using POCS (as
reported in [2]) to the more general class of m-D complex-
valued FIR filters which are important in many applications
as stated earlier. This paper starts with a brief background
about POCS in section 2. Then section 3 deals with the
derivation of the design algorithm for complex-valued filters
where the m-D complex-valued FIR filter design algorithm
using POCS is stated. Simulation results are given in section
4 and finally in section 5 presents some conclusions.

2. OVERVIEW OF PROJECTIONS ONTO
CONVEX SETS

The approach of POCS has recently been used in a number of
applications [10]. However, for the understanding of this pa-
per, it is necessary to basically re-state the theory of POCS.
To begin with, let all the filters of interest be elements of a
Hilbert space H and consider a closed convex set C which is
a subset of H. Then, for any vector h ∈ H, the projection
PCh of h onto C (where PC is an operator) is the nearest
neighbor element in C to h (i.e., y) and is determined by

‖h − PCh‖ = min
y∈C

‖h − y‖ (1)

where ‖ · ‖ is the Euclidean norm. The operator PC is a
nonlinear projection operator that maps any vector h ∈ H
to a vector that belongs to C. Now the basic idea of POCS
is as follows. Every known property of the unknown h ∈ H
will restrict h to lie in a closed convex set, say Ci ∈ H.
Assume that C1, C2, · · · , Cl denote l (for l known properties)
closed convex sets in a Hilbert space H, and Co denotes their



intersection set given by

Co =
l

\

i=1

Ci. (2)

The set Co, which is considered as the solution set, will
contain elements that satisfy all the constraint sets and
will therefore represent feasible solutions. For each i =
1, 2, · · · , l, let PCi

denote the projection operator onto the
set Ci. Then, the Fundamental Theorem of POCS is given
as follows [10]:

Theorem 1 Assume that Co is non-empty. Then for every
h ∈ H and i = 1, 2, · · · , l, the sequence {PCi

h} converges
weakly to a point of Co.

In other words, theorem 1 states that the vector iterates
{hk} generated by

hk+1 = PCl
PCl−1

· · ·PC1
hk (3)

with an arbitrary starting point h0, will converge weakly
to a point of Co, and since our Hilbert space is of finite
dimension, the algorithm will strongly converge to a point
within Co [11, 10].

3. COMPLEX-VALUED FIR FILTER DESIGN
USING POCS

In order to design m-D complex-valued FIR digital filters us-
ing POCS, we need to derive the design algorithm for the 1-D
complex case. Hence, let us design N -length 1-D complex-
valued FIR digital filters using POCS, where the required
filter properties are put into constraint sets that are closed
convex sets belonging to the set of M -dimensional complex
vectors, i.e., H = C

M where M � N . In this case, the prop-
erties are from the time domain and also frequency domain.
So we want to design an N -length FIR filter h[n] which is
complex-valued. The magnitude spectrum of the discrete
time Fourier transform (DTFT) of h[n] must be upper and
lower bounded by 1+ δp and 1− δp, respectively in the pass-
band. In addition, the stopband magnitude spectrum must
be bounded by δs. Finally, we want the phase spectrum to
be as close as possible to a predefined phase, say φ(ω). If
these constraint sets are closed convex sets, and happen to
intersect, then we can guarantee strong convergence of the
algorithm since our space is of finite dimension. So the fol-
lowing sections represent the constraint sets. Note that we
can show that they are closed convex sets and also that we
can derive their associated projection operators.

3.1 The constraint set C1

Let C1 = {h ∈ C
M : h[n] = 0 for n 6∈ S} where S is the set

of points on which the filter coefficients of length N are not
equal to zero. That is, C1 is the set of all complex-valued
vectors of length M with at most N non-zero filter coeffi-
cients. The projection of an arbitrary vector x ∈ C

M , where
x 6∈ C1, onto C1, i.e., PC1

, can be given by the following
relationship:

PC1
x =



x[n], if n ∈ S
0, if n 6∈ S. (4)

3.2 The constraint set C2

C2 = {h ∈ C
M with h[n] ↔ H(ejω) : ∠H(ejω) = φ(ω)}.

That is, C2 is the set of all sequences which are complex-
valued and whose phase response is constrained to be equal
to a predefined phase response φ(ω). The projection of

x ∈ C
M and x 6∈ C2 onto C2 can be given by the follow-

ing equation:

PC2
x ↔



|X(ejω)| cos (θx − φ(ω)) exp(jφ(ω)), if AC2

−|X(ejω)| cos (θx − φ(ω)) exp(jφ(ω)), if BC2

(5)
where AC2

⇒ cos (θx − φ(ω)) ≥ 0, and BC2
⇒

cos (θx − φ(ω)) < 0.

3.3 The constraint set C3

Define C3 as the set of complex-valued sequences whose
DTFT magnitude spectrum is lower bounded by 1 − δp in
the passband, i.e., C3 = {h ∈ C

M with h[n] ↔ H(ejω) :
|H(ejω)| ≥ 1 − δp for ω ∈ Ωp} where Ωp is the passband in-
terval which is equal to [−ωp, ωp], ωp is the cut-off frequency,
and δp is the maximum passband allowable tolerance. The
projection PC3

onto C3 of an arbitrary vector x ∈ C
M , where

x 6∈ C3, can be written as

PC3
x ↔

8

>

<

>

:

X(ejω), if |X(ejω)| > (1 − δp) for ω ∈ Ωp

(1 − δp)
X(ejω)

|X(ejω)|
, if |X(ejω)| ≤ (1 − δp) for ω ∈ Ωp

X(ejω), otherwise.

(6)

3.4 The constraint set C4

Let C4 = {h ∈ C
M with h[n] ↔ H(ejω) : |H(ejω)| ≤ 1 + δp

for ω ∈ Ωp}. So we can say that C4 is the set of complex-
valued sequences whose DTFT magnitude should not exceed
the limit 1 + δp in the passband. Also, it can be shown that
the projection of an arbitrary vector x ∈ C

M , where x 6∈ C4,
is given by

PC4
x ↔

8

>

<

>

:

X(ejω), if |X(ejω)| < (1 + δp) for ω ∈ Ωp

−(1 + δp)
X(ejω)

|X(ejω)|
, if |X(ejω)| ≥ (1 + δp) for ω ∈ Ωp

X(ejω), otherwise.

(7)

3.5 The constraint set C5

Finally, let C5 be the set of all sequences which are complex-
valued and whose DTFT magnitude is bounded by δs in
the stopband Ωs where Ωs = [−π,−ωs) ∩ (ωs, π], ωs is the
stopband cut-off frequency and δs is the maximum allowable
stopband tolerance. So C5 = {h ∈ C

M with h[n] ↔ H(ejω) :
|H(ejω)| ≤ δs for ω ∈ Ωs}. Finally, the projection of an
arbitrary vector x ∈ C

M , where x 6∈ C5, can be shown to be

PC5
x ↔

8

>

<

>

:

X(ejω), if |X(ejω)| < δs for ω ∈ Ωs

−δs
X(ejω)

|X(ejω)|
, if |X(ejω)| ≥ δs for ω ∈ Ωs

X(ejω), otherwise.

(8)

3.6 The POCS design algorithm for m-D complex-
valued FIR filters

Following from (3), the POCS algorithm for designing 1-D
complex-valued FIR digital filters is given by

hk+1 = PC1
PC2

PC3
PC4

PC5
hk (9)

where PC1
, PC2

, PC3
, PC4

, and PC5
are given in (4), (5), (6),

(7), and (8), respectively, and h0 is an arbitrary complex-
valued vector of dimension M . Now, as mentioned earlier,
one of the main advantages of using POCS to design FIR
digital filters is the simplicity of extending the 1-D design
algorithm to multi-dimensions. So we are interested in ex-
tending the 1-D complex-valued FIR filter design algorithm
to m-D as shown below.



1. Project hk onto C5, that is

g1,k = PC5
hk ↔

8

>

<

>

:

Hk(ejΩ), if AC5

−δs
Hk(ejΩ)

|Hk(ejΩ)|
, if BC5

Hk(ejΩ), otherwise

(10)

where AC5
⇒ |Hk(ejΩ)| < δs for Ω ∈ Ωs, and BC5

⇒
|Hk(ejΩ)| ≥ δs for Ω ∈ Ωs.

2. Project g1,k onto C4 using

g2,k = PC4
g1,k ↔

8

>

<

>

:

G1,k(ejΩ), if AC4

−(1 + δp)
G1,k(ejΩ)

|G1,k(ejΩ)|
, if BC4

G1,k(ejΩ), otherwise
(11)

where AC4
⇒ |G1,k(ejΩ)| < (1 + δp) for Ω ∈ Ωp, and

BC4
⇒ |G1,k(ejΩ)| ≥ (1 + δp) for Ω ∈ Ωp.

3. Project g2,k onto C3 using

g3,k = PC3
g2,k ↔

8

>

<

>

:

G2,k(ejΩ), if AC3

(1 − δp)
G2,k(ejΩ)

|G2,k(ejΩ)|
, if BC3

G2,k(ejΩ), otherwise

(12)

where AC3
⇒ |G2,k(ejΩ)| > (1 − δp) for Ω ∈ Ωp, and

BC3
⇒ |G2,k(ejΩ)| ≤ (1 − δp) for Ω ∈ Ωp.

4. Project g3,k onto C2 using

g4,k = PC2
g3,k ↔



|G3,k(ejΩ)|ΓΓΓ if AC2

−|G3,k(ejΩ)|ΛΛΛ if BC2

(13)

where ΓΓΓ = cos (θG3,k
− φ(Ω)) exp(jφ(Ω)),

AC2
⇒ cos (θG3,k

− φ(Ω)) ≥ 0, ΛΛΛ = cos (θG3,k
− φ(Ω))

exp(jφ(Ω)), and BC2
⇒ cos (θG3,k

− φ(Ω)) < 0.
5. Finally, project g4,k onto C1 by

hk+1 = PC1
g4,k =



g4,k[n], for n ∈ S
0, otherwise (14)

where Ω = (ω1, ω2, · · · , ωm) and n = (n1, n2, · · · , nm), S
is the m-D finite extent support, Ωp is the m-D passband
region, and Ωs is the m-D stopband region. In this paper,
the same stopping criterion reported in [2] is used. That
is, if the distance error is less than or equal to a predefined
threshold ε, i.e., if ‖hk+1 − hk‖ ≤ ε, then we will stop the
algorithm. Otherwise, we will repeat steps 1-5.

4. SIMULATION RESULTS

Recall that M is the dimension of the Hilbert space, N is
the filter length, δp and δs are respectively the maximum
allowable passband and stopband tolerances, and ε is the
algorithm stopping threshold. Note that the simulations are
preformed in MATLAB which is installed on a Pentium 4
machine with a speed of 2.6 GHz and with a RAM of 1GB.
Finally, the designed filters are displayed with respect to
their normalized angular frequencies.

4.1 Low Delay Non-Symmetric Passband Filters

Low delay non-symmetric passband FIR filters are used in
many areas of application such as communications [5]. Here,
we illustrate the design of two low delay single passband FIR
filters: 1-D and 2-D filters designed using POCS.

4.1.1 A 1-D Low Delay Non-Symmetric Passband Filter

An example of a desired low delay filter can be given by:

Hd(e
jω) =



e−j12ω, if −0.1π ≤ ω ≤ 0.3π
0, if −π ≤ ω ≤ −0.2π & 0.4π ≤ ω ≤ π

(15)
where δp = 0.00025, δs = 0.025, N = 31, M = 310, and
with a stopping threshold equal to ε = 10−5. In Fig. 1
(a), the designed magnitude response of the filter shows an
approximate equiripple response with a maximum stopband
magnitude of −29 dB. The group delay is shown in Fig. 1
(b) where it corresponds to almost linear-phase characteris-
tics in the passband with a mean absolute deviation (we take
the mean of the absolute value within the passband group
delay difference between the ideal and designed filters) from
the desired group delay of 4.3993 × 10−2. As can be seen
clearly from Fig. 1 (c), the design required 129 iterations to
uniformly converge with ε = 10−5 and it took 0.54 secs. The
same filter was designed using the complex Remez exchange
algorithm reported in [3] with a passband weight of 10. The
algorithm, which is written as a MATLAB built-in function,
took 8.08 secs on the same machine. The magnitude spec-
trum of this filter is also shown in Fig. 1 (a) where its stop-
band magnitude is approximately equal to −23 dB while its
group delay mean absolute deviation from the desired group
delay is equal to 5.28 (see Fig. 1 (b)). The POCS designed
filter in this case resulted in a better magnitude response as
well as a better group delay response when compared with
that obtained using the complex Remez method. Also, in
this case, the POCS design algorithm required less design
running time (it saved 93.81% of the design running time)
when compared to the complex Remez low delay single pass-
band designed filter.

4.1.2 A 2-D Low Delay Shifted Circularly Symmetric Filter

We want to design a 2-D complex-valued FIR low delay fil-
ter based on a passband and stopband circular specifications.
The circular region is centered on (−0.1π, 0.1π) with a pass-
band radius of 0.3π and a stopband radius of 0.5π. The filter
parameters are as follows: δp = δs = 25×10−3, for a 19×19
filter, M = 190 × 190, and with a delay of 9 samples. The
design took 372 iterations to converge with an error thresh-
old of ε = 5× 10−5. Fig. 2 shows the circularly symmetrical
magnitude response of the designed filter, where it satisfies
the aforementioned design specifications.

5. CONCLUSION

This paper has extended the design of 1-D real-valued FIR
digital filters using the theory of Projections onto Convex
Sets (POCS) to include m-D complex-valued FIR digital
filters. So this newly derived POCS algorithm for m-D
complex-valued FIR filters is more general and can also ac-
commodate m-D real-valued filters. The resultant filters pos-
sess an approximate equiripple behavior. The simulation
results have illustrated a superior filter design when using
POCS, when compared with the complex Remez filter de-
sign method reported previously in [3]. The only disadvan-
tage of the POCS algorithm for FIR filter design (in the
opinion of some filter designers), and depending upon the
filter parameters and stopping threshold value, is the large
number of iterations required to achieve convergence. One
can overcome this problem by speeding up the convergence
of the POCS design algorithm for FIR filter design by using
the relaxed version of POCS, which is known as: Relaxed
Projections onto Convex Sets [10].
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Figure 1: A 1-D complex-valued low delay FIR low-pass filter
with N = 31, M = 310, ωp1

= −0.1π, ωp2
= 0.3π, ωs1

=
−0.2π, ωs2

= 0.4π δp = 0.00025, δs = 0.025, and ε = 10−5:
(a) magnitude response in dB (POCS: solid line and Complex
Remez: dash-dot line), (b) passband group delay (POCS:
solid line, Complex Remez: dash-dot line and the Desired
Group Delay: dash line), and (c) convergence of the 1-D
complex-valued low delay FIR low-pass filter design using
POCS distance error curve.
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Figure 2: The magnitude response in dB of a 2-D complex-
valued low 9 sample delay (shifted) circularly symmetric FIR
filter designed using POCS with N ×N = 19×19, M ×M =
190 × 190, centered at (−0.1π, 0.1π) with passband radius
of 0.3π, stopband radius of 0.5π, δp = δs = 25 × 10−3, and
ε = 5 × 10−5.
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