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ABSTRACT

In non-linear estimation problems three distinct regions
of operation can be observed [1][2]. In the asymptotic re-
gion, the Mean Square Error (MSE) of Maximum Like-
lihood Estimators (MLE) is small and, in many cases,
close to the Cramer-Rao bound (CRB) [3]. In the a
priory performance region where the number of inde-
pendent snapshots and/or the SNR are very low, the
MSE is close to that obtained from the prior knowledge
about the problem. Between these two extremes, there
is an additional transition region where MSE of esti-
mators deteriorates with respect to CRB. The present
paper provides exemples of improvement of MSE pre-
diction by CRB, not only in the transition region but
also in the a priori region, resulting from introduction
of a detection step, which proves that this refinement in
MSE lower bounds derivation is worth investigating.

1. INTRODUCTION

Lower bounds on the minimum mean square error
(MSE) in estimating a set of parameters from noisy ob-
servations provide the best performance of any estima-
tors in terms of the MSE. Originally they were intro-
duced to investigate fundamental limits of a parameter
estimation problem or to assess the relative performance
of a specific estimator. They also have been widely used
since as a mean to assess the exact MSE of MLE for
problems where it is difficult to evaluate. They can be
divided in two families [4]. The first family treats the
set of parameters as an unknown deterministic quan-
tity, and provides bounds on the MSE in estimating any
selected values of the parameters ("locally” best estima-
tors). The second family assumes that the parameters
are random variables with known a priory distributions.
In this paper, we will focus on the first family, i.e. de-
terministic parameters estimation. Historically the first
MSE lower bound for deterministic parameters to be
derived was the CRB [3][4], which has been the most
widely used since. Its popularity is largely due to its
simplicity of calculation, the fact that in many cases it
can be achieved asymptotically (high SNR [5] and/or
large number of snapshots [3][4]) by MLE, and last but
not least, its noticeable property of being the lowest
bound on the MSE of unbiased estimators, since it de-
rives from the weakest formulation of unbiasedness at
the vicinity of any selected value of the parameters [6].
This initial characterization of locally unbiased estima-
tors has been improved first by Bhattacharyya’s works

[4][6][7] which refined the characterization of local un-
biasedness, and significantly generalized by Barankin
works [6], who established the general form of the great-
est lower bound of any absolute moment of an unbiased
estimator. In the particular case of MSE, his work al-
lows the derivation of the highest lower bound on MSE
(BB) since it takes into account the strongest formula-
tion of unbiasedness, that is to say unbiasedness over
an interval of parameter values including the selected
value. Unfortunately the BB is generally incomputable
[2]. Numerous works ([1][8][9] and additional references
in [1] and [10]) devoted to the computing and placing
of bounds on MSE have shown that the CRB and the
BB can be regarded as key representative of two general
classes of bounds, respectively the Small-Error bounds
and the Large-Error bounds. Indeed, in non-linear es-
timation problems three distinct regions of operation
can be observed. In the asymptotic region, the MSE
is small and, in many cases, close to the Small-Error
bounds. In the a priory performance region where the
number of independent snapshots and/or the SNR are
very low, the observations provide little information and
the MSE is close to that obtained from the prior knowl-
edge about the problem. Between these two extremes,
there is an additional ambiguity region, also called the
transition region. In this region, the MSE of MLEs dete-
riorates rapidly with respect to Small-Error bounds and
generally exhibits a threshold behavior corresponding to
a ”"performance breakdown” [11] highlighted by Large-
Error bounds. However in nearly all fields of science
and engineering, a wide variety of processing requires
a binary detection step designed to decide if a signal
is present or not in noise. Intuitively, such a detection
step is expected to improve the lower bounds tightness
by selecting instances with relatively high signal energy
- sufficient to exceed the detection threshold - and disre-
garding instances belonging to the a priory region that
deteriorate the MSE. Additionally, as a detection step
restricts the set of observations available for parameter
estimation, any accurate MSE lower bound should take
this statistical conditioning into account. In the first
part we briefly recapitulate main theoretical results on
the characterization of the joint detection and estima-
tion problem for deterministic parameters introduced in
[10] and extended since in [12]. Then, the second part
aims at completing initial results presented in [10] by
highlighting the influence of the type of the detection
test on estimation performance.
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2. CONDITIONAL LOWER BOUNDS

2.1 On lower bounds and norm minimization

Let x be the random observations vector and €2 be the
observation space. Denote by fy (x) the probability den-
sity function (p.d.f.) of observations depending on an
unknown deterministic real parameter 6. Let F, be the
real vector space of square integrable functions over €.
A fundaﬂal property of the MSE of a particular es-

timator g (6g) (x) € Fq of g (0g), where 6 is a selected
value of the parameter 6 and ¢ () is a real function of
real variable 6, is that it is a norm associated with a
particular scalar product ( | ),:

MsEs, [s00) = (90 60— 900

(9(x) [ h(x))g, = Eo,lg(x)h(x)]
= /g (x) k(%) fo, (x) dx.

(1)

0

In the search for a lower bound on the MSE, this prop-
erty allows the use of two equivalent [12] fundamental
results: the generalisation of the Cauchy-Schwartz in-
equality to Gram matrices (generally referred to as the
“covariance inequality” [1]) and the minimization of a
norm under linear constraints [2][13]. Nevertheless, we
shall prefer the "norm minimization” form as its use
provides a better understanding of the hypotheses as-
sociated with the different lower bounds on the MSE
2)[10][13].

Then, let U be an Euclidean vector space of any di-
mension (finite or infinite) on the body of real num-
bers R which has a scalar product (|). Let ¢, ,, =
(c1,...,¢k) be a free family of K vectors of U and
v =(vy,..., UK)T a vector of R¥. The problem of the

minimization of ||[ul|® under the K linear constraints
(u | ck) = v then has the solution:

K

min{\|u||2} = vIG 'v for uyy = Zaka (2)
k=1
(01,...,ax)" = a=Gg'v, (G, = (e | ew)

The above result (2) can be generalized to linear
combinations of a family of N vectors u, .,

(uj,ug,...,uy) where the minimization problem be-
comes [12] - A €ERNY X #£0 - :

2

N
min Z Myl = ATGuA S under (uy | ck) = Vien
n=1
- (Gu)pry = (uy | uy) - and leads to the matrix in-
equality:

MG A > AT (VIG'V)A & G, > VGV (4)

2.2 Example of lower bound derivation: CRB

As an example of lower bound derivation using this re-
markable approach, we propose a novel derivation of
CRB in the multiple parameters case [12]. We consider
now the case where the p.d.f. of the observations fg (x)
depends on a vector of K parameters 8 = (61,...,0k)
b/el@ging to RE. Let 8y be a particular value of 6, and

g (0o) (x) an estimator of g (0p) vector of N real func-
tions of @. In the multiple parameters context, it seems

quite natural to consider that gf(ﬂ\o) (x) is a ”locally
unbiased” estimator of g, (0) if:

Eoyvdo [82(00) ()] = & (60 +d0) +o(]la6))

(5)

og,, (0
— g (00) + 2% 4 1o a6
00
9 a 9 P a\T
where =5 = (871, --,m> . o7 = (zg) and
Oh(0o,x) _ Oh(6,x)

0 = o0 |, which means that, up to the first

—

order and in the neighborhood of 8y, g, (6o) (x) remains
an unbiased estimator of g, () independently of a -
small - variation of the parameters. Considering as well
that in the neighborhood of 6y:

9fe, (x)

W‘MJFO(WOH),

foo+de (xX) = fo, (x) +

the requested locally unbiased property (5) is satisfied

for all components of g (0p) (x) if the following linear
constraints are verified:

Eq, |8(80) (x) — g (00)| = 0

- dln fo, (x T
o, | (2060) (0 - & (00)) 225527 | — 2500

Then by defining:
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where:

F (6)) = Eo,

(2255 (225 ]

is the well known Fisher Information Matrix (FIM).
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As previously mentionned and higlighted hereabove,
the principal merit of the "norm minimization” form
is to raise explicitly in the first place the problem of
the formulation of pertinent constraints ((5) and (6)),
which then determine the value of the lower bound on
the MSE.

2.3 Extension to Conditional Lower Bounds

More generally, all known bounds on the MSE — Cramer-
Rao, Bhattacharya, Barankin, Hammersley-Chapman-
Robbins and Abel bounds — are different solutions of the
same generalized norm minimization problem (3) under
sets of appropriate linear constraints (possibly infinite
but countable) [2][10][12][13]. If the observations set is
restricted to a subset D of {2, for example by a detection
step, then the p.d.f. of observations fy (x) becomes a

conditional p.d.f. fy (x | D) = 4259 and scalar product

Pp(0)
(1) becomes:
(9(x) [ h(x))g,p By, [9(x) h(x) | D] 9)
— [ 9 n 0] fay (x| D) ix

D
where /fg (x)dx = P (D) = Pp(6) is the probability
D

of conditioning event D. It is obvious that if subset D
does not depend on parameter 6, scalar product defini-
tions (1) and (9) are of the same form. Consequently,
whatever bound is considered its conditional formula-
tion will be obtained by substituting D and fp (x| D)
for  and fp (x) in the various expressions. For exam-
ple, one can derive the two useful following expressions
of the Conditional Fisher Information Matrix (CFIM)
[10]:

F (6| D)., = Eo [mnfe (x) Oln fo (x) | D]

00, 00,
. 81nPD (0) BlnPD (9)
00y, 00,
92In Pp (6)
001,00,

9?In fo (x)

F (0| D)k,l = —FEe |: 00,00,

D] +

that encompass usual unconditional FIM expressions
(8).

Contrarily, if subset D does depend on parameter 6,
generalization of lower bounds based on derivatives con-
straints - such as Cramer-Rao, Bhattacharya or Abel
bounds [1][2][10] - is not an elementary exercise since
it involves calculation of integral derivatives with re-
spect to its domain. Although it is certainly an interest-
ing mathematical problem, this case is of little interest
for actual applications where realizable detection test -
defining the conditioning set D - can not depend on the
unknown value 6.

3. ON THE INFLUENCE OF DETECTION
TESTS ON ESTIMATION PERFORMANCE

This section deals with estimation of the direction of
arrival (DOA) of a signal source by means of a 2 sen-

sors array to illustrate the main theoretical points ensu-
ing from conditioning: conditional bound expressions,
“conditional” efficiency, importance of bias at low SNR.
Why this application? Firstly, because this technique is
one of the oldest and most widely used high-resolution
techniques, even nowadays, in most operational tracking
systems [14]. Secondly, as in nearly all fields of science
and engineering, its processing requires a detection step.
Last but not least, a complete statistical prediction can
be computed analytically for a Rayleigh signal source,
including probability of detection, bias, MSE of MLE
and CRB, conditionned by two different detection tests.

3.1 DOA estimation with a 2 sensors array

Assume that a signal source situated at an angle 6 (de-
viation angle from array boresight) is received on a 2
sensors (¥ and A) array in the presence of a circular,
zero mean, white (both temporally and spatially), com-
plex Gaussian thermal noise. A common model of the
observation equation dedicated to this problem - after
Hilbert Filtering - is the following receiver signal vector:

a(t) [ 9 } + [ " % } (10)
— B(Hx+n()

where S (t) = a(t) gs, x = (1,m", r= Z—g, ny (t) and
na (t) represent Gaussian receiver noise, gs; and ga rep-
resent the one-way complex sensor voltage pattern at
angle 6 and «(t) represents the complex amplitude of
the source (including power budget equation, signal pro-
cessing gains).

In the particular case of a 2 sensors array, the angu-

lar information is contained in the ratio r () = ggég;,

provided the function § — r (0) is invertible. In actual
2 sensors arrays beamwidth/resolution constraint gen-
erally prevents this assumption from being verified for
any 6 in [’7“, %] Nevertheless with appropriate sen-
sors patterns - uniform sum excitation for ¥ and linear
odd difference excitation for A - collocated and in phase
[14], r (8) = r, (0) is real and the property can hold for
0 belonging to ¥ main beam, i.e. between the first pat-
tern nulls. Such 2 sensors array are generally called
monopulse antennas where r,, (#) is the monopulse ratio

-1
x

If a linear relation r, = k6 is assumed - which is true
at the vicinity of boresight [14] - then statistical predic-

and 0 =r (‘;—2) is the deviation angle function.

tion of § = 5= can be easily derived from statistical pre-
diction of 7, = Re {r}. It is the reason why in open lit-
erature the deviation angle function is generally reduced
to a linear function characterized by a Monopulse Slope
and most DOA statistical performance analysis are re-
lated to 7,. We will consider this approximation in the
present paper.

3.2 Statistical prediction of monopulse ratio
MLE

In the following, we focus on the case r, = r = 0, which
corresponds to a source signal located along the main
axis of a monopulse antenna (6 = 0). This is a reference
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Figure 1: MSE of MLE and CRB of 7, = Re {%} con-
ditioned by LRT versus SNR

case in the study of the performance of such receiving
system [14], since it corresponds to the peak received
energy. Moreover, for this particular DOA and a single
snapshot, the two following detection tests:

H
AP +[SP =T
Hyg

o
X7 =2T
Ho

and

correspond respectively to the Likelihood Ratio Test
(LRT, Neyman-Pearson Test) and the Generalized
LRT [15], where T is the detection threshold. The
monopulse ratio MLE is then defined by 7, = Re {%}
The two joint detection and estimation problems have
been anaytically characterized in terms of:

e Probability of Detection (Pp) and Probability of
False Alarm (Pp4),

e conditional
(Var[r, | D)),
e conditional CRB (F (6 | D)),

mean (E[r,|D]) and variance

conditioned by the event D = {\E|2 > T} of the LRT

{\A|2 +I2P > T} of the GLRT

[10][12][15]. Therefore all results introduced in the next
section rely on exact analytical formulas.

or the event D

3.3 Results

Figures (1) and (2) display the values of the MSE of
MLE of r, and its related CRBs for biased - E [, | D]
is known - and unbiased estimates as a function of SNR
on sum channel (X) for Pra = 10~* (classical value in
track mode for a radar). In figures legend, "MLE”, ”Un-
biased CRB” and ”Biased CRB” respectively stands for
MLE, CRB for unbiased estimators and CRB including
the known bias, computed for Prgq = 0.999 (negligible
detection step), whereas ”Conditional ...” take into ac-
count the detection test, which is the the LRT in figure
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Figure 2: MSE of MLE and CRB of 7, = Re {%} con-
ditioned by GLRT versus SNR

(1), and the GLRT in figure (2).

First of all, let us mention that in the problem at hand,
the p.d.f. of 7, without conditionning follows a Student
distribution with mean value 0 and a smoothly increas-
ing variance [10] as the SNR decreases. Therefore, we
are in the particular case where the transition region is
smooth when the detection threshold effect is negligible
(see 'MLE’ curve in figures (1) and (2)), which is not the
most general case in non-linear estimation problems.

Nevertheless some general considerations can still be
drawn from this particular case. Intuitively, the detec-
tion step is expected to modify MSE behavior mainly
in the transition region where it plays a crucial role in
selecting instances with relatively high signal energy -
sufficient to exceed the detection threshold - and disre-
garding instances mainly consisting of noise that deteri-
orate the MSE. This effect is confirmed by both figures
(1) and (2) where the introduction of a detection step
has decreased MSE values in the transition region. Ad-
ditionnaly both figures highlights the necessity of using
conditional form of a given lower bound to be able to
keep at least its lower bound property. This is partic-
ularly well illustrated on figure (2) in the SNR region
[—10,10] dB where the Conditional Unbiased CRB is
obviously the only meaningful expression of the unbi-
ased bound.

On the other hand, a surprising result is the tightness
of:

e the Conditional Unbiased CRB in most of the transi-
tion region in case of the GLRT (figure (2)),

e the Conditional Biased CRB in all the a priori region
in case of the LRT (figure (1)).

Indeed, a particular property of 7, is to be non efficient
when SNR tends to infinity, which originates from its
Student p.d.f. (see 'MISE’ curves in both figures (1) and
(2)). This result reveals that conditioning of the ob-

" 40
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Figure 3: Probability of Detection versus SNR

servations by an event D may significantly modify the
conditions required to attain the CRB and thus to ob-
tain an efficient estimator, biased or not.

Additionally, it also shows that there is a limit to the
pertinence of the information delivered by the CRB for
unbiased estimates at very low SNR, even when con-
ditioning is included, since threshold detection increase
has almost no effect on the tightness of the Unbiased
CRB in the a priory region, whatever the test. The main
reason is that a locally unbiased estimator of source sig-
nal parameters generally does not exist asymptotically
as the SNR decreases to 0. To overcome this limitation,
one can resort to biased CRB. It is an attractive the-
oretical refinement if analytical expression of the bias
is available as it is shown in both figure (1) and (2)
where introduction of bias (” Conditional Biased CRB”
curve) has restored CRB property in all regions of op-
eration. Unfortunately the bias depends on the specific
estimator and furthermore is hardly ever known in prac-
tice. This pessimistic observation must however be bal-
anced against practical considerations. For example, it
is doubtful whether this limit raises a genuine practical
problem in the GLRT case, since it appears in an SNR,
region (SNR < —10dB) where the source signal is sim-
ply considered to be absent from an operational point
of view (Pp < 107%).

Last but not least, the most noticeable result is that the
nature of the observations selection performed by each
detection test is of first importance: whereas they lead
to comparable Pp (see figure (3)) they induce a very dif-
ferent MSE behaviour as their selection effect increases,
resulting in a completely opposite effect on the MSE
value in the a priori region (decrease with LRT and
increase with GLRT).

4. CONCLUSION

Despite they have been derived for CRB and for a par-
ticular case of MLE behavior (smooth transition re-
gion), the results introduced in the present paper shows

that the problem of lower bound tightness at low SNR
(Pp < 1) must be revisited for practical application in-
volving a binary detection test. Indeed they clearly
highlight that, in a joint detection and estimation prob-
lem, the nature of the detection step plays a crucial role
in estimation performance preventing from drawing rel-
evant forecasts from the unconditionned study case. Ad-
ditionnaly, improvement of Unbiased CRB behavior in
the transition region resulting from conditioning by the
GLRT shows that this refinement in MSE lower bounds
derivation for unbiased estimators is worth investigat-
ing, including Large-Error bound representatives.
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