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1. INTRODUCTION

This paper describes the performance characteristics of an
adaptive filter, a digital filter based on the perturbation analy-
sis of the eigenvalue equation. The algorithm find the singu-
lar value decomposition (SVD) of a general covariance ma-
trix by stochastic approximation. The deviation in the eigen-
values through times is shown to be an index of the energy
present in each channel of an sensors array The analysis of a
simple nonstationary case is given.

2. SENSOR SELECTION STRATEGIES

While it may be appropriate to design networks that densely
populate a region with microsensors in medical application
for instance - such as electroencephalogram (EEG) or elec-
tromyogram (EMG)-, operation of the network may not re-
quire that all nodes be operating. Indeed, for efficient op-
eration and efficient use of communication under restricted
requirements, it may be desirable to select a subset of nodes
to communicate at any fixed time since the selected subset
can change over time.
Usual hypotheses are the following: (i) 2 sensors don’t
record exactly the same signal, (ii) all sources must be in-
volved in the recording with a non-zero variance, (iii) elec-
trodes providing irrelevant signals are rejected, (vi) the low
power of the signal of interest can be improved, (v) there
doesn’t exist an optimal location of the sensors, constant in
time as the “target” moves. These considerations, in addi-
tion to the low power of the signal, may explain why the
locations of the electrodes can improve the signal extraction,
while others can decrease its efficiency.
Note that fusion approaches range from simple rules of pick-
ing the best result to model-based techniques that consider
how the signals are generated. Again, there is a tradeoff
between performance and robustness [1]. Simple fusion
rules are robust but suboptimal while more sophisticated and
higher performance fusion rules may be sensitive to the un-
derlying models [2]. The fusion algorithm should recognize
the dependency in the information to be fused and avoid dou-
ble counting.
We consider a digital signal processing sensor array system
(Fig. 1) based on randomly distributed sensor nodes. In
most array processing, the sensor array geometry is fixed and
known. In this system, array calibration may be impracti-
cal due to unknown placement and orientation of the sen-
sors with unknown frequency/spatial responses. We propose
a “blind” selection technique, using only the measured sen-
sor data, to form either a sample data or a sample correlation
matrix.
Not so many articles have dealt with this topic, usually in
the area of digital communications. The typical scenario in-
volves narrowband sources of which some known characater-
istics are used for the pupose of detection. Among the fea-

tures exploited are the cyclostationarity property [3], spectral
coherence [4], the statistical difference between desired and
undesired sources, including types of signal nonstationarity
and higher order statistical parameters [5]. The latter class
of problems has generated a wide variety of articles in which
higher order cumulants have been effectively used to limit
the effect of mesokurtic disturbances such as Gaussian noise
[6].

Figure 1: Networked sensors.

The aim of choosing electrodes is to enhance the quality of
the output signal. This quality is strongly compromised by
the fact that the signal of interest is overlayed by other signals
with an equal or higher amplitude. Hence, to make the sig-
nal of interest observable, the sources have to be separated.
This is not possible by conventional linear filtering as the
signals overlap in time and frequency space, but if their mix-
ture is linear, instantaneous and noise-free, the well-known
method of independent component analysis (ICA) is able to
recover the original sources, up to a scale factor and permu-
tation [7]1. As former investigations have shown, applying
ICA to the signals of experimental found electrodes is not
satisfying: by selecting the “best” electrodes the quality of
the input signal of the ICA procedure will increase, and thus
also the quality of the output. The reason for the fact that
some electrodes are better than others is that the sources are
not emitting homogenously in every direction but, for every
source, there are regions of maximal and regions of mini-
mal amplitude [8]. As a conclusion, the task is to find pairs
of electrodes so that their differential measurements are opti-
mized in order to separate the sources.
A criterion or cost function for that optimization has to be de-
fined. Two ways for finding optimal electrodes can be iden-
tified:
1. The first possibility is to get the measurements of all elec-

trodes, to compute the cost function of every electrode
pair and to select the pairs with the lowest value. This

1A necessary condition to recover the original sources is that the num-
ber of external sensors must be greater or equal to the number of original
sources.



would mean the computation of all possible combina-
tions of two electrodes.

2. The second way could be to select electrode pairs ran-
domly and change their position iteratively by only using
a subset of measurements.

Unaffected by the cost function used, several questions came
up concerning the optimal electrodes found:
1. Are those sensors, for which the criterion is fulfilled best,

also the best for another criterion, which is impossible
to measure? One answer regarding an example criterion
could be that the measurement with the lowest amplitude
of the signal s1 is the best for observing the signal s2. But
the signal s2 may not be visible at all in this measurement.

2. What if the solution is not one single but a set of differ-
ent measurements? An additional criterion has then to be
applied to this set. E.g. measurements with minimal am-
plitude of s1 are those orthogonal to s1 but, among these,
are also those orthogonal to the s2. Thus, out of the sen-
sors orthogonal to the signal s1, those sensors have to be
chosen, which are most parallel to the signal s2.

3. Does there exist, among the latter set of different mea-
surements, a trivial one? E.g. one measurement with
minimal amplitude of s1 could be received when using a
first electrode as reference and a second electrode which
is the same as, or as near as possible to that reference. In
that case, this solution has to be excluded.

In the following, we attempt to formulate a “statistical theory
of energy variation”. This is a very difficult subject and the
present work should be regarded as only a beginning.

3. FORMAL PROBLEM STATEMENT

We consider a sensor array system – a rectangular structure
with base> height [9] (see Fig. 1). The sensors’ relative po-
sitions are unknown and the sources have specific frequency
characteristics that cannot be used to our advantage. In the
following, every measurement of sensor signals is the differ-
ence between the potential at one sensor and the potential
at a “reference” sensor, which is performed by a differential
amplifier. Consider the situation in which R sensors are ran-
domly distributed in a spatial region, which can be 1,2 or 3
dimensional. Denote the R×1 sensor data vector by

xt = (x1(t), . . . ,xr(t), . . . ,xR(t))T
. (1)

xt denote a random process. Let X0 be the dataset collect-
ing the samples xt , t = 1, . . . ,T and C0 =

�
[xt xT

t ], the auto-
correlation function of x estimated by Ĉ0 u

1
T åT

t=1 xt xT
t , fi

and li, i = 1, . . . ,n be the eigenvectors and eigenvalues of
C0. Note that f̂i and l̂i are estimates of fi and li. Assume
that the li’s are disctincts. For an additive sample xT+1,

we have C = (X0|xT
T+1)

T

(

X0
xT

T+1

)

= XT
0 X0 + xT+1xT

T+1 =

Ĉ0 + xT+1xT
T+1.Let DC = xT+1xT

T+1 be a real symmetric per-
turbation matrix. We wish to obtain a first-order approxima-
tion of the eigenvectors and eigenvalues of C in terms of the
fi’s and li’s, where C = C0 +DC. These may be obtained by
retaining the terms of first order or lower of the equation:

(C0 +DC)(fi +Dfi) = (li +Dli)(fi +Dfi), (2)

where C0fi = lifi. The resulting equation is:

C0Dfi +DCfi u liDfi +Dlifi. (3)

To calculate Dli, we left-multiply (3) by f T
i and, since

f T
i C0 = lif T

i , we have:

Dli u f T
i DCfi. (4)

Since the f j, i = 1, . . . ,n form a set of basis vector, i.e.
f T

i f j = di j,∀i, j, we can write Dfi as a linear combination
of the f j’s as follows

Dfi =
n

å
j=1

bi jf j , (5)

where bi j = f j
T Dfi. To deal with nonstationary processes

in discrete time, it is reasonnable to expect that the deriva-
tive of the autocorrelation function for x can be computed:

E[x(i)
t x( j)

t
T
] = d(i+ j)

dt C0 (see Box and Miller [10]). In par-
ticular, we suppose that when we pass to continuous time,
many of the definitions generalize in a straigthforward way,
although some new problems arise in connexion with limit-
ing operations, and then: d

dt C0 ≈ E[ẋt ẋT
t ].

From the eigenvalue equation, C0 = FlFT , with F =
(f1 . . .fR) and supposing we can manipulate derivatives of
this equation freely, exactly as differentiating ordinary func-
tions, we have

Ċ0 = ḞlFT +Fl̇FT +Fl ḞT
, (6)

Note that Ċ0 is simply obtained by performing xt − xt−1 for
any t. Hence, by identifying l̇i ≈ Dli and ˙phii ≈ Dfi, we
have

Ċ0 = å
i

Dfilif T
i +å

i
Dlfif T

i +å
i

lifiDfi
T
, (7)

By right and left-multiplying by fi and rearrange using (7),
we have:

Dfi =
(Ċ0 −DC)fi

2li
. (8)

At this stage, the R-measurements have been combined to-
gether providing R more informative signals, as it can be seen
in the following example.

Example 1 Consider the simple scenario where R = 50×50
diaphragm electrodes, located around a patient thoracic
cage (see Fig. 2), each of them providing uncertain mea-
surements, to be combined in order to be able to extract the
d sources in real time.

Figure 2: Multi-electrodes surface data acquisition.

A subset X ∗ of n � R signals recorded by selected sen-
sors will be processed by a Blind Source Separation (BSS)
algorithm, discarding all other electrodes (Fig. 3.a).



The quality of the extracted electromyogram diaphragm us-
ing only X ∗ is improved by comparison to the performances
reached if the whole set of signals (n = 100) is used in the
extraction process.

A set of electrode pairs can be easily identified (the K sen-
sors for which the amplitude of the of the Dli, i = 1, . . . ,K
is maximized) based on the variation of information bring at
each sample.

3.1 Finding Further Pairs. . .

Once a set of pairs of sensors have been found, further pairs
have to be found from the measurements x1x2 . . .xn, where
xi = (xi1, . . . ,xiT )T is the data vector of sensor i and T is the
transpose operator. More electrode pairs can be found by
minimizing the correlation between an additional pair and a
pair already found. This could be achieved by examining the
following correlation difference:

D· =
�
[xdxr]−

�
[xoxr], (9)

where xr denotes the signal of the already found pair, xo
denotes the signal of the additional pair at the actual position
and xd is the signal of the additional pair.
When computing the correlation by equation (9), it is only
possible to receive the correlation between two sensor pairs.
But it is necessary to have one single criterion which reflects
the correlation between one new signal and an arbitrary
number of already found signals. It was proposed to use the
angle between the axis of the new signal and the eigenvector
of the new signal. By eigenvector and eigenvalue is meant
the eigenvector and eigenvalue of the full correlation matrix
of the signals

�
[XT X ]. The explanation for this uses statis-

tical matters [11] which will be outlined in the following,
while the first and second signals are always the signals of
the already found sensor pairs and the third signal is always
the signal of a new sensor pair whose placement has to
be optimized. The problem is located near the problem of
principle component analysis, which is discussed in detail in
[12].

In the following, all signals are assumed to have zero mean,
which could be easily achieved by subtracting the mean from
the signals. The correlation between two signals could also
be seen as in figure 4 where the lines indicate the eigenvec-
tors of the signals. When one signal is already recorded and a
second one has to be found, the two signals are uncorrelated
if the eigenvector of the second signal is lying parallel to the
axis of the second signal (figure 4.b). The two signals can be
correlated if the eigenvalues are rotated as in figure 4.a.
Thus the angle between the eigenvector and the axis of the
new signal can be used as a scalar criterion for the uncorre-
latedness of the signals. The angle between two vectors a
and b is calculated by equation (10):

j = arccos
(

a ·b
|a||b|

)

(10)

This calculation works also for higher dimensions and is used
as the quality criterion. Figure 5 shows the eigenvectors of
the signals before (a) and after (b) the iterative optimization.
One problem of this optimization was, that the differential
signal of two sensors very near to each other is uncorrelated
with any other signal but sensors like that are not useful for a
measurement. The approach of the two sensors to each other
is accompanied by a significant decrease of the eigenvalue of
the new measurement. Thus if the eigenvalue is beneath a
certain threshold, the sensors are replaced randomly.
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Figure 3: (a). 8 channnels electromyographic signals, (b).
Eigenvalues of signals with time, (c). Eigendeviation with
times.
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Figure 4: Distributions of Variables
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Figure 5: Eigenvectors for three dimensions

4. CONCLUSION

In this paper, we propose strategies based on sensor selection.
We have shown that sensor selection is a viable approach in
the absence of reliable and detailed prior information by sim-
ply using the autocorrelation of the signals and its derivative.
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