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ABSTRACT

Computer Aided Detection (CAD) in Computed Tomography
Colonography (CTC) aims at detecting colonic polyps that are the
precursors of cancer. We propose a polyp detection / identification
algorithm with a built-in enhancement scheme. The underlying idea
of the proposed method is to utilize the nonlinear heat diffusion pro-
cess, which is closely related to the nonlinear diffusion filtering, to
generate a vector field that is correlated with the shape of the colon
wall. The nonlinearity is used to specifically enhance the difference
between polyp and nonpolyp structures to improve the detection and
the identification performance. The method was evaluated on real
patient CTC data acquired from a polyp-rich volunteer. 3 FPs (17
FPs) were achieved at 6/7 (7/7) sensitivity levels for polyps larger
than 8mm.

1. INTRODUCTION

Computed Tomographic Colonography (CTC) is a minimally inva-
sive technique that employs X-Ray CT imaging of the abdomen and
pelvis following cleansing and air insufflation of the colon. Orig-
inally proposed in the early 1980’s [1], it became practical in the
early 1990’s following the introduction of helical CT and advances
in computer graphics. Currently available multi-slice helical X-Ray
CT scanners are capable of producing hundreds of high resolution
(< 1mm cubic voxel) images in a single breath hold. Conventional
examination of these source images is rather time-consuming and
the detection accuracy is unavoidably limited by human factors such
as attention span and eye fatigue. Several visualization and navi-
gation techniques have already been proposed to help the radiolo-
gists [2–5]. However, computer aided detection (CAD) tools are
envisioned to improve the efficiency and the accuracy beyond what
can be achieved by visualization techniques alone [6–13]. Several
studies have investigated CAD for CTC. Vining et al. used abnor-
mal colon wall thickness to detect colonic polyps [6]. Summers
et al. used the mean, the gaussian and the principal curvatures of
the colon surface and showed good preliminary results for phantom
and patient data [7, 8]. Kiss et al. used surface normals along with
sphere fitting [9], while Yoshida et al. used both the pre-segmented
surface differential characteristics captured by a shape index, and
the gradient vector field of the CT data [10]. The proposed surface
normal overlap (SNO) algorithm is based on the observation that for
locally spherical and hemispherical structures, large numbers of sur-
face normals intersect near the centers of these structures [11]. To
improve specificity, Göktürk et al. used triples of randomly oriented
orthogonal cross-sectional images of pre-detected suspicious struc-
tures which are then classified by support vector machines [12],
while Acar et al. modeled the way radiologists utilize 3D infor-
mation as they are examining a stack of 2D images as an Edge Dis-
placement Field (EDF) [13]. We propose the Heat Diffusion Field
(HDF) method as a way to detect and characterize polyps repre-
sented as a surface in 3D. The HDF method is a 3D detection and
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characterization method built on the well-known nonlinear diffu-
sion filtering framework. This has the effect of forcing the diffusion
to form a diffusion pattern singularity near the centers of protruding
structures, like polyps. This enhancing property is the main ad-
vantage of HDF over previously proposed methods, like EDF, SNO
and the Gradient Concentration [10] and, to the best of our knowl-
edge, is the first enhancing scheme proposed for CTC. The HDF
method is based on detecting and characterizing those sinks thus
generated in conjunction with local voxel distribution around them.
The method was evaluated using CT data from a single harboring 7
polyps with diameters ≥ 8mm. The paper is organized as follows:
We explain the algorithm in Section 2. Section 3 explains the eval-
uation methodology. Section 4 discusses the results based on real
patient data experiments. In Section 5, we further discuss our algo-
rithm and the results. The concluding remarks are given in Section
6.

2. THE HDF ALGORITHM

The primary observation is that if the colon lumen is thought to be
initially heated to a constant level, then the heat diffusion process
would generate local heat diffusion pattern singularities (sinks) near
the centers of protruding structures. This can further be enhanced
by using a nonlinear diffusion scheme that depends on the curva-
ture of iso-temperature surfaces of the diffusing heat field, where
initially the colon wall itself is the only isotemperature surface. The
diffusion proceeds faster in regions where the isotemperature sur-
faces are concave (necks of protruding structures) rather than con-
vex (apex of protruding structures). In other words, nonlinear dif-
fusion schemes effect is to have higher diffusion coefficients at the
bases of protruding structures with respect to their apex. The diffu-
sion pattern can be described by a vector field V(r),r = [x y z ]T
that is generated by tracking the motion of the isotemperature sur-
faces along their normal directions. V would have the aferomen-
tioned singularities near the centers of such structures. It is thus
used to detect suspicious locations. Both the vector field geometry
and local voxel distribution around such detected points are used to
identify the polyps.

2.1 Segmentation

First, the colon lumen in each subvolume is segmented by simple
thresholding followed by morphological filtering as follows: The
CT data are converted to a binary volume (S(r)) by thresholding at
350 HU (CT (r) > 350HU ⇒ S(r) = 1 o.w. S(r) = 0). S(r) = 0
are the air voxels. Next, the isolated 1’s in S(r) are removed and
26-neighborhood morphological closing followed by a thinning op-
eration is performed on the binary volume S to filter out segmenta-
tion noise using Matlab’s built-in functions. Thus S = 1 represents
the tissue while its complement represents the colon lumen.

2.2 The HDF Computation

The algorithm starts with the segmented colon lumen, {r|S(r) = 0},
set to a constant temperature, T0 = 1. It is then allowed to cool.
The diffusion process in governed by the nonlinear PDE given in
Equation 1 [14]. T (r, t) stands for the temperature at position r at



time t . Equation 1 relates the rate of change in T (r, t) throughout
the domain, to the divergence of the gradient of T (r, t) weighted
by some scalar weight. The weighting factor, given by g, is the
isotropic diffusion coefficient. Equation 2 relates this change in
temperature to an instantaneous vector field v(r, t) that represents
the motion of the iso-temperature surface along its normal direction
at the given position and time.

∂T (r, t)
∂ t

= Ñ ·g(κ(r,t), t)Ñ T (r, t) (1)

∂T (r, t)
∂ t

= −Ñ T (r, t) ·v(r, t) (2)

where

g(κ, t) =

 −5 arctan(1.2κ)+ 5π

2 +0.1
5π+0.1 ×Dmax t ≤ ND t

Dmax t > ND t
(3)

where κ = κ(r, t) is the mean curvature of the iso-temperature sur-
face passing through the point r at time t calculated from T (r, t),
which is an implicit function for all iso-temperature surfaces [15].
This nonlinear function is not necessarily the only function that can
be used, other monotically decreasing functions of κ with smooth
transition are expected to perform similarly. D t = 0.1 is the dis-
cretization time step. Dmax is the upper bound for the diffusion
coefficient (emprically set as 5). Equation 3 states that a nonlinear
spatially varying diffusion coefficient is applied during the first N
iterations (empirically set as 5). The rest of the diffusion process is
linear isotropic diffusion with a diffusion coefficient of Dmax. The
role of g is to increase diffusion in regions with concave (κ < 0)
iso-temperature surfaces (like the base of polyps) with respect to
the convex (κ > 0) regions (like the apex of polyps)
Equating Equations 1 and 2, we get,

−Ñ ·gÑ T (r, t) = Ñ T (r, t) ·v(r, t)
T (r ∈ {S(r) = 0}, t = 0) = T0 (4)

where g represents the nonlinear diffusion coefficient as given
above. We can define the vector field V(r) as

V(r) =
∫

τ

0
|Ñ T (r, t)|v(r, t)dt , v ‖ Ñ T

=
∫

τ

0

(
Ñ T (r, t)
|Ñ T (r, t)|

)(
− Ñ ·gÑ T (r, t)

)
dt

, T (r, t) < 0.1 (5)

The HDF is the resultant vector field V(r) that is the integral of in-
stantaneous field v(r, t) weighted by the temperature gradient over
time (Equation 5) in regions where the current temperature is less
than 0.1. T (r, t) < 0.1 makes sure that mainly the leading heat front
contributes to V(r). The geometrical characteristics of V will be
used during the detection and the identification of colonic polyps
together with a second parameter TU (Sections 2.3 and 2.4).

Numerical computation of the HDF, V(r), is done using Equa-
tion 5, where the continuous integration is replaced by discrete sum-
mation over a finite number of time intervals. The isotropic diffu-
sion term in Equation 5 is solved numerically using the Alternating-
Direction Implicit (ADI) Method, which is said to guarantee numer-
ical stability [?]. The numerical differentiation was done using a
Gaussian derivative kernel with σ = 0.6mm and ±2σ kernel sup-
port. Figure 1 shows the heat distribution at different stages of the
diffusion in the vicinity of a 8.9 mm polyp. The heat diffusion pat-
tern singularity around the polyp center is apparent.

2.3 Detection

The proposed nonlinearity of the diffusion process is aimed at
generating spherically symmetric singularities in the vicinity of

Figure 1: Isotemperature contour plots on the central slice across a
8.9 mm polyp (Clockwise from top left figure) a) just before diffu-
sion starts, b) at the end of the nonlinear diffusion part, c) after the
final iteration (The bold line marks the colon wall), d) computed
vector field with the detected HDF hit marked, yielding a FA value
of 0.028 (the figure is zoomed for visual purposes).

polyp centers. A perfectly spherically symmetric vector field is not
achievable due to polyp shape variations; however, it can be ap-
proached. The differential characteristics of V are summarized by
its Jacobian matrix J. For V(r) (a 3D vector field), J is defined as
follows:

J =


∂Vx
∂x

∂Vx
∂y

∂Vx
∂ z

∂Vy

∂x
∂Vy

∂y
∂Vy

∂ z
∂Vz
∂x

∂Vz
∂y

∂Vz
∂ z

 (6)

The sinks sought correspond to the vector field points where the
eigenvalues (λ ’s) of J have all negative real parts close to each
other. Their closeness (i.e. the spherical symmetry of V(r)) can
be measured using the Fractional Anisotropy parameter which is
defined as,

FA =

√
3
2

√
(α1−α)2 +(α2−α)2 +(α3−α)2

(α2
1 +α2

2 +α2
3 )

(7)

where αi = Real(λi) , i = {1,2,3} and α is the mean of α’s. FA
represents the geometrical information embedded in the HDF. FA
is between 0 and 1, and FA = 0 for perfectly spherically symmetric
singularities, hence the smaller the FA is, the more probable the
structure is a polyp, provided that αi < 0, i = 1,2,3. The 3D
Watershed Transform is used to segment the 3D buckets (watershed
basins in 3D) in the 3D FA map (i.e. the geometry map, FA(x,y,z),
in ´ 3) generated as explained above. The minimum FA point in
each bucket is marked as a ḧit(̈i.e., a polyp candidate). This stage is
summarized in Figure 2.

2.4 Identification

The FA parameter quantifies the spherical symmetry and is espe-
cially useful in discriminating folds from polyps. The elongated
structure of the folds results in a V(r) that is 2D symmetric only
on the plane perpendicular to the fold’s main axis. This means
mini{|αi|} ∼= 0 which results in high FA values. However, FA alone
is not sufficient to eliminate all non-polyp hits. There are hits with
low FA values just because there are nearby air voxels distributed
around somewhat uniformly, like at the junction of folds. To over-
come this problem, we perform a local analysis of the colon wall



1. Compute αi = Real(λi) , i = {1,2,3} for the whole volume.
2. Mark all points with αi < 0 , i = {1,2,3} as Valid Points

and compute the FA values for these points.
3. Assign FA = −¥ (a value required by MatlabT M’s built in

watershed function) for all Non-Valid Points and segment
the FA volume created in Step 3 using the watershed trans-
form (WT). WT labels the FA buckets in 3D.

4. Exclude the FA buckets that touch the volume boundaries.
5. Mark the minimum FA points in each bucket as an HDF Hit

as long as it is in the tissue.

Figure 2: The HDF geometry based detection algorithm

around the hits and compute a Triangle Area Uniformity (TU) pa-
rameter. TU is used together with FA for identification.

The primary idea behind TU is that there should be air voxels
around a polyp that are directionwise uniformly distributed over a
spherical surface patch (colon wall). We mark the azimuth and the
elevation angles of the closest air voxels within a certain distance
(15mm is used as an arbitrary choice1) in M directions (M=100 as
an arbitrary choice) on a unit sphere. These points should form a
single cluster on the unit sphere for polyps and be uniformly dis-
tributed within this cluster. We perform a Delaunay Triangulation
of the surface defined by these points and use the number of tri-
angles and the trimmed variance of their areas to measure this as
follows:

Ai , i = 1, · · · ,K : Triangle areas

Ã = {Smaller 90% of A′is}

σ
2
Ã = VARi(Ã) , TU =

K̃

σ2
Ã

(8)

where K̃ denotes the number of triangles in the reduced set Ã. The
largest 10% of the Ai’s are excluded from the variance calculation
because the polyps are more likely to be hemispherical structures,
hence the large triangles formed at the bases of polyps increase σ2

Ã
artificially. TU is larger for polyps.

3. EVALUATION METHODOLOGY

We used Free Response Receiver Operator Characteristic (FROC)
curves to evaluate the performance of our algorithm [16]. FROC
curves show the trade-off between sensitivity (detection rate of true
positives) and the detection rate of false positives. They are es-
pecially suitable for the performance evaluation of detection algo-
rithms as opposed to pure classification algorithms as the set of neg-
atives is not well-defined. In other words, all points in the 3D data
except the inner regions of polyps are potential negatives. Since this
corresponds to using a large number in the denominator for the con-
ventional definition of specificity, it would be misleading.

We used CTC data acquired from a 56 year old female patient
for evaluation. The patient was scanned in the prone position in
an 8 slice multi-detector row CT scanner (GE Lightspeed Ultra,
Milwaukee, WI) in the 4 slice helical mode (slice width=2.5mm,
pitch=0.75, slice spacing=1.25mm, FOV=36cm reconstructed on a
512× 512 matrix, kV=120, mA=120). She underwent fiberoptic
colonoscopy immediately after the CT scan 47 polyps were reported
by the radiologist - 7 larger than 8 mm. A thousand and two hun-
dred fifty subvolumes of 30mm3 with 10mm overlap at every end,
covering the whole colon wall were processed. The average voxel
spacing was 0.74mm× 0.74mm× 1.31mm and the data were inter-
polated to 0.6mm× 0.6mm× 0.6mm prior to processing. A wide

1This limit is related to the radius of the maximum polyp size we are
interested in.

range of polyp shapes were present in the dataset.
The gold standard was generated by a radiologist with 8 years

of experience in CTC, who marked the centers of FOC (Fiber Optic
Colonoscopy) confirmed polyps and measured their diameters us-
ing a custom built computer program. Those center points and the
diameter measurements specify spherical regions. All hits in such
a sphere are considered as TPs associated with the same polyp and
are labeled accordingly. Assuming that the vector fields around the
detected sinks inside the true polyps are more spherically symmet-
ric than sinks associated with nonpolyp structures, we sorted all of
the detected points with respect to FA in a descending order. We
then went through this list starting from the top, keeping the top
most one and eliminating all of the other points that were, closer to
that hit than the radius of the smallest polyp of interest (ξ ), as set by
the user. The underlying idea is that the centers of two polyps of in-
terest (assumed to be a hemispherical structures in general) can not
be closer to each other than ξ . We also limited ξ to be larger than
or equal to 1.5mm. This process also eliminates multiple hits which
may occur due to using overlapping subvolumes. This grouping
strategy is only based on the a priori preference that the user (the
radiologist) would have made regarding the size of polyps he/she
was interested in, simulating a clinical application. The final iden-
tification is done on the 2D (FA,TU) domain using simple thresh-
olding. An FA threshold,εFA, and a TU threshold, εTU , are varied
through the list of hits, W . The subset of W with FA < εFA AND
TU > εTU is the output positive set, Y . If a point in Y is within a
polyp (defined by the polyp center and diameter, as determined by
the radiologist setting the gold standard) then it is associated with
that polyp and labelled, otherwise it is left unlabelled. The number
of points in Y that are left unlabelled is the number of FPs at that
(εFA,εTU ) pair. The number of TPs is the number of polyps with at
least one voxel (from the inner region of that polyp) in Y . Multiple
detections within a single polyp are considered as a single TP. A 1D
FROC curve is computed for each εFA. The combination of these
curves make up a 2D FROC surface. The evaluation is based on the
FP and sensitivity rates corresponding to (εFA,εTU ) pairs.

4. RESULTS

Only the clinically significant polyps (≥ 8mm) were considered, i.e.,
all hits associated with small polyps were excluded from the perfor-
mance analysis. The FA parameter was used as a pre-detector in
the following way. We computed 1D FROC curves by varying the
TU parameter on the set of hits with FA ≤ εFA, where εFA is the
FA threshold. For εFA = 0.2411, the FROC curve resulted in 17
FPs at 7/7 sensitivity and 7 FPs at 6/7 sensitivity. For a lower εFA
(εFA = 0.1213) we missed one of the 7 polyps but suffered 3 FPs at
6/7 sensitivity. The missed polyp was 10.4mm in diameter and was
located at the junction of folds. Figure 3 summarizes the above re-
sults. The algorithm was implemented using Matlab6.5 and run on
an IntelT M PentiumT M4 based PC with 2.40 GHz clock speed and
1GB RAM. It took 10 seconds to process each 30mm3 subvolume
(51×51×51 voxels).

5. DISCUSSION

The HDF has a built-in enhancement scheme due to the embed-
ded nonlinearity and it has a geometrical analysis component that
enables the HDF algorithm to discriminate polyps from elongated
protruding structures like the haustral folds. Unlike a vector field
that could have been generated using the SNO method or the dis-
tance transform, the HDF is designed to generate spherically more
symmetric sinks in the case of sessile polyps. To the best of our
knowledge, HDF is the first polyp enhancing scheme proposed.

The second stage of the algorithm considers the colon wall
topology around the detected point. The TU parameter does not
deal with the colon wall characterization, as previously proposed
methods do [10], but rather focuses on identifying non-protruding
structures surrounded by air voxels, which may lead to vector field
singularities with low FA values like junctions of folds. The TU
parameter quantifies the clustering of these air voxels around the



Figure 3: Top: The FA vs TU distribution of the HDF hits for polyps
larger than 8mm in diameter.Bottom: Two FROC curves for two
different FA thresholds.

vector field singularity. Despite being a local parameter, it consid-
ers a subvolume large enough to enclose a polyp. As such, it is a
global parameter for structures of the size of a polyp.

The method performed poorly on one of the 7 polyps that were
larger than 8mm in diameter. This polyp had a diameter of 10.4mm
and was situated at a junction of folds and, thus, had a higher FA
value than other polyps of similar size.This resulted in the accrual
of a large number of false positives.

The method uses simple thresholding in a 2D parameter space
of FA and TU . A better scheme of identification would be to train a
general purpose classifier to discriminate between polyps and non-
polyps. However, significantly more data is required train and test
such a classifier.

An evaluation on a larger dataset is required to assess the HDF
method more thoroughly. A valuable assessment of any CTC CAD
algorithm would be to measure the algorithm’s performance in dis-
criminating patients with polyps from the ones without any polyps.

6. CONCLUSION

The principle problem of CAD in CTC is to detect protruding struc-
tures (polyps, haustral folds, et.) on the extremely flexible colon
wall and to identify the polyps among them. All of the present
approaches are based on characterizing the colon wall or the CTC
data around the colon wall. The proposed HDF method attempts
to enhance the structures of interest and performs the detection and
identification tasks as part of this enhancement. It is, to the best
of our knowledge, the first CTC CAD method that employs such
a scheme. The idea can also be imporved via PDE-based image
processing techniques. This is left for the future research.
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