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ABSTRACT

In this paper, we present a new approach for online joint
detection and tracking for multiple targets, using sequential
Monte Carlo methods. We first use an observation clustering
algorithm to find some regions of interest (ROIs), and then
propose to initiate a new target or remove an existing track,
based on the persistence information of these ROIs over time.
In addition, we also integrate a very efficient 2-D data assign-
ment algorithm into the sampling method for the data associ-
ation problem. Computer simulations demonstrate that the
proposed approach is robust in performing joint detection
and tracking for multiple targets even though the environ-
ment is hostile in terms of a high clutter rate and a low target
detection probability.

1. INTRODUCTION

Online joint detection and tracking for multiple targets re-
mains a challenging problem for surveillance systems using
one or multiple sensors to monitor the environment. Typi-
cal applications can be found in navigation, air trafic control,
and military surveillance systems.

Recently, sequential Monte Carlo (SMC) methods, also
known as particle filters, have become popular in recursively
tracking moving objects. To cope with the joint multitar-
get detection and tracking scenario, approaches like [1, 2]
were proposed, but according to [3] they are not robust if
the environment becomes more hostile, such as higher clut-
ter density and low probability of target detection. In this pa-
per, we extend the hybrid approach in [3] to a new approach
in the context of a SMC framework that stochastically esti-
mates the number of targets and hence the multitarget state.
Moreover, to address the complex measurement-to-target as-
sociation problem, we adopt the soft-gating approach in [4].

This paper is organised as follows. Section 2 presents
a general state-space model for the problem, and a brief de-
scription of the SMC framework for joint target detection and
tracking. Section 3 briefly presents the brith and death moves
for estimating the number of targets. Simulation results are
shown in Section 4, followed by the conclusions in Section
5.

2. DATA MODEL

The data models we use in this paper follow those in [3, 4],
so we only a brief decription here. Let xt be a combined
target state vector for Kt unknown and time-varying targets
as xt = [xT

1,t , ...,x
T
k,t , ...,x

T
Kt ,t ]

T , which follows a dynamic

model, given by

xk,t = fk(xk,t−1,vk,t), k ∈ {1, ...,Kt}, (1)

where xk,t denotes the state vector of the kth target, and fk(·),
which models the motion of the target, can be a linear or
nonlinear function. The noise vk,t is assumed to be zero-
mean with a fixed and known covariance matrix Σv. It is
assumed that all targets are moving independently according
to Markovian dynamics [5].

The number of targets Kt is modelled by the following
stochastic relationship at time t

Kt = Kt−1 + eKt , (2)

where eKt is a discrete iid random variable such that

Pr(eKt = −1) = hd,

Pr(eKt = 0) = 1−hb−hd,

Pr(eKt = 1) = hb,

(3)

where hb,hd ∈ {0,1} are the pre-defined probabilities for in-
crementing and decrementing the number of targets, respec-
tively. Note that the models in (2) and (3) state that the num-
ber of targets can change by no more than one at a given time.
In general, we set hd = hb = h/2, where h ∈ {0,1}, but when
Kt−1 = 0, we set hd = 0 and hb = h.

Throughout this paper, a single sensor is employed, but
the entire framework can be readily extended for multiple
sensors. Let yt be an observation received by the sensor,
whose mth measurement may originate from a true target
or a false alarm, or otherwise known as clutter. We denote
an association vector by at = [a1,t , ...,am,t , ...,aMt ,t ]

T , where
Mt is the number of measurements. It is assumed that the
measurement-to-target assignment is always on a one-to-one
basis. If the mth measurement ym,t is associated with the kth
target, am,t = k, and ym,t can be expressed as

ym,t = g(xk,t ,wm,t ), (4)

where g(·), the mth observation model, may be a linear or
nonlinear function, wm,t , mutually independent of vk,t , is
also assumed to be zero-mean with a fixed and known co-
variance matrix Σw. While a true target may exist, it may
not be detected when, for example, the probability of target
detection PD is low, and its measurement may not be received
by the sensor, leading to data loss. On the contrary, am,t is
set to zero if ym,t originates from clutter, whose distribution



is assumed uniform over the surveillance region [6, 7]. From
this point onward, it is assumed that all targets share the same
evolution model, and that all measurements share the same
observation model.

In the context of joint detection and tracking, we are in-
terested in estimating the posterior distribution p(qt |y1:t)

1,
where qt = {xt ,Kt ,at}, by N particles and their associated

importance weights {q (i)
t ,w(i)

t }N
i=1 using the Bayesian Se-

quential Estimation framework, as follows

q (i)
t ∼ q(qt |q

(i)
t−1,Yt) (5)

w(i)
t µ w(i)

t−1

p(yt |q
(i)
t )p(q (i)

t |q (i)
t−1)

q(qt |q
(i)
t−1,Yt)

, (6)

where Yt = {yt′}
t
t′=t−t with t being the width of a sliding

window, and åN
i=1 w(i)

t = 1. The proposal function in (5) can
be further expanded to

q(qt |q
(i)
t−1,Yt) =q(Kt |K

(i)
t−1,Yt)q(xt |x

(i)
t−1,K

(i)
t ,K(i)

t−1,Yt)

q(at |x
(i)
t ,yt),

(7)

which are the proposal functions for Kt , xt , and at , respec-
tively.

The set {q (i)
t−1}

N
i=1 and the associated weights

{w(i)
t−1}

N
i=1 in (6) approximates the posterior distribu-

tion of p(qt−1|y1:t−1), and p(yt |q
(i)
t ) is the likelihood

function. The remaining term in the numerator is the joint
conditional prior function for qt , which has the following
hierachical structure

p(q (i)
t |q (i)

t−1) =p(K(i)
t |K(i)

t−1)p(x
(i)
t |x

(i)
t−1,K

(i)
t ,K(i)

t−1)

p(a(i)
t |x

(i)
t ,K(i)

t ),
(8)

which are the prior functions for Kt , xt , and at , respectively.
In the following sections, we provide a brief description of
these prior and proposal functions for qt . Details can be re-
ferred to [3, 4].

2.1 Prior functions for qt

The prior functions p(x
(i)
t |x

(i)
t−1,K

(i)
t ,K(i)

t−1) and p(K(i)
t |K(i)

t−1)
essentially follow the evolution models of xt in (1), and Kt
in (2) and (3), respectively. In this paper, the prior function
p(a(i)

t |x
(i)
t ,K(i)

t ) takes the similar form as that in [3], but in

our approach K(i)
t may differ from K( j)

t , for i 6= j.

2.2 Proposal functions for qt

To estimate K(i)
t , we first search for the regions of interest

(ROIs) [3], and hence randomly propose either the birth or
death move for track initiation or removal, based on the per-
sistence of these ROIs in representing the true targets. Ulti-
mately, the number of active targets K̂t can be determined by
the histogram of the particles {K(i)

t }N
i=1.

1The notation (·)1:t indicates all the elements from time 1 to time t.

Given K(i)
t and x

(i)
t−1, we are able to sample the state

particles according to x
(i)
t ∼ q(xt |x

(i)
t−1,K

(i)
t ,K(i)

t−1,Yt). In
general, this form is difficult to get, so one may choose
the dynamic prior as the proposal function, i.e., x

(i)
t ∼

p(xt |x
(i)
t−1,K

(i)
t ,K(i)

t−1). With the particles {x(i)
t ,K(i)

t }, we may

determine the data association vector a (i)
t using the soft-

gating approach that combines the efficient M-best 2-D data
assignment algorithm [5, 7], which optimally computes all
feasible measurement-to-target assignments, subject to cer-
tain constraints, with the sampling methods [4]. Once the
particles {q (i)

t }N
i=1 are available, the associated importance

weights {w(i)
t }N

i=1 can be determined according to (6).

3. BIRTH / DEATH MOVES

The target detection module in our approach is similar to
that in [3], where a clustering algorithm which groups a set
of target originating observations within a sliding window
plays a key role. The main differences between these two
approaches are that in our approach the number of targets is
stochastically estimated and the particles K(i)

t , for i = 1, ...,N,
may have different values.

The basic idea of the clustering algorithm is that a set
of ROIs within the surveillance region is searched, each of
which represents a set of grouped observations that are likely
to originate from true targets. It can be shown [3] that there
is an association between the true targets and the sets of ROIs
representing these targets. The persistences of these associ-
ated ROIs provide a clue when targets appear and disappear.

Let po
b = (t− to

0)/tb be a measure of persistence of object
o that is being detected by a sequence of regions, where to

0 is
the time at which the ROI representing the object o is first
detected and tb is a pre-defined threshold. If object o is a
true target, the quantity po

b increases with time; otherwise,
the quantity po

b is generally less than 1. The closer the value
of po

b to one, the more certainly target initiation or the birth
move should be executed.

For track removal, we may exploit the fact that when a
target vanishes, the ROIs representing this target will also
vanish with some delay. Let tk′

1 be the last time track k′ can
be associated with a measurement, and pk′

d = (t− tk′
1 )/td be a

measure of persistence of track k′ that fails to associate with a
measurement, with td being a pre-defined threshold. If track
k′ has persistently failed to associate with a measurement, the
quantity pk′

d increases with time. The closer the value of pk′
d

to one, the more certainty track removal or the death move
should be executed. The following schemas summarise the
procedures for the birth and death moves, respectively.

Birth Move

Given a set of ROIs that are unassociated with any exist-
ing tracks [3], we first compute the persistence measure po

b.
For i = 1, ...,N,

• Draw a random sample u ∼U[0,1].

– If min(po
b,1) ≥ u, then K(i)

t = K(i)
t−1 + 1. A unique

track ID will be assigned to the object o and main-
tained throughout its state estimation.



1. Initialise the state components of the new track
using the spatial information given by the associ-
ated ROI. For example, we may uniformly sam-
ple a measurement within the ROI and convert it
to the initial state information for initialisation to
yield x̃

(i)

K(i)
t

. For more information about this ini-

tialisation procedure, please refer to [3].

2. Sample x′(i)
t ∼ q(x′

t |x
(i)
t−1,K

(i)
t−1).

3. Append the initialised state component x̃(i)

K(i)
t

with

x′(i)
t , yielding x

(i)
t = [x′(i)

t |x̃
(i)

K(i)
t

].

– else K(i)
t = K(i)

t−1.

1. Sample x
(i)
t ∼ q(xt |x

(i)
t−1,K

(i)
t ).

• Compute the data association vector a (i)
t , given yt , x

(i)
t ,

and K(i)
t , using the proposed approach.

• Update the importance weight w(i)
t according to (6)

• Repeat the procedure for i → i+1.
�

Death Move

For i = 1, ...,N, compute pk
d for all active tracks for k =

1, ...,K(i)
t−1.

• Randomly select one track for removal, say k′ ∈

{1, ...,K(i)
t }, given pk′

d > 0.
• Draw a random sample u ∼ U[0,1].

– If min(pk′
d ,1) ≥ u, then K(i)

t = K(i)
t−1 −1, and its track

ID will be deleted.
1. Remove the components of track k′ from the

combined state vector x
(i)
t−1. That is, x̃

(i)
t−1 =

[x
(i)T

1,t−1, ...,x
(i)T

k′−1,t−1,x
(i)T

k′+1,t−1, ...,x
(i)T

K(i)
t−1 ,t−1

]T .

2. Sample x
(i)
t ∼ q(xt |x̃

(i)
t−1,K

(i)
t ).

– else K(i)
t = K(i)

t−1.

1. Sample x
(i)
t ∼ q(xt |x

(i)
t−1,K

(i)
t ).

• Compute the data association vector a (i)
t , given yt , x

(i)
t

and K(i)
t , using the proposed approach.

• Update the importance weight w(i)
t according to (6).

• Repeat the procedure for i → i+1.
�

4. COMPUTER SIMULATIONS

In this section, we examine the performance of the proposed
algorithm in the following areas: target detection, track-
ing, and data association, using a single sensor, located at
(xo,yo) = (0,0). The environment in the experiment is very
hostile in which the target detection probability PD = 0.5 and
the clutter rate is LC = 20. The surveillance region RV is
[2000,2000]2. Fig. 1 shows all observations for T = 1000
scans, including target and clutter measurements. Moreover,
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Figure 1: A plot of all measurements for T = 1000 scans.

Parameters Values
Σcv diag([5×10−4,5×10−4])
Σw diag([0.0001,25])

tb, td 5, 10

Table 1: Parameters for computer simulation.

the observation model we adopt is a nonlinear model and
contains two components – bearing and range. Three tar-
gets are synthesised according to the nearly constant velocity
model [5] with parameters summarised in Table 1. The state
and observation noises are assumed Gaussian random vari-
ables with zero mean and covariance matrices, Σcv and Σw,
respectively. A total of 1000 particles are used to estimate
the posterior distribution function p(qt |y1:t). According to
Fig. 2, all tracks are well detected as described in Section 3,
except the time delays incurred when initiating and remov-
ing tracks. Figs. 3 and 4 compare the true tracks and their
estimates. It can be seen that not only are the targets well
tracked, but the measurement-to-target association using the
soft-gating method is also done well.

Finally, the tracking performance of the proposed method
is evaluated as a function of different numbers of particles N
in terms of the Root Mean Square Error (RMSE), defined as

RMSEl =

√

1
K(t)T

T

å
t=1

||xt − x̂l
t(N)||2, (9)

N RMSE s
500 22.5 4.3
1000 20.1 3.0
1500 14.4 2.4
2000 13.2 2.2
5000 12.9 1.8

Table 2: Evaluation of the tracking performance of the pro-
posed algorithm for different values of N in 20 independent
runs.
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Figure 2: The trajectories of the online detection of number
of targets.
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Figure 4: A comparison between Target 3 and its estimates.

where RMSEl is the error for the lth independent run, and
x̂l

t (N) is a posterior mean estimate of xt for lth run with N
particles. For each value of N, a total of 20 independent runs
were used with the same synthesised tracks but different ob-
servations, and the RMSEs and the standard deviations are
shown in Table 2. As expected, the RMSE decreases as N
increases, at the expense of an increased computational load.

5. CONCLUSIONS

In this paper, we presented a new approach for joint detec-
tion and tracking for multiple targets using sequential Monte
Carlo methods. Using the information from the detected
ROIs by the clustering algorithm, we may estimate the num-
ber of targets by proposing either the birth or death move,
followed by the target state estimation and measurement-to-
target association using the soft-gating approach. Computer
simulations demonstrated that the proposed approach is very
robust in estimating the number of targets, even though the
environment is very hostile in terms of high clutter density
and low target detection probability.
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