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ABSTRACT 
Computerized ionospheric tomography (CIT) is a method 
to investigate ionosphere electron density in two or three 
dimensions. This method provides a flexible tool for 
studying ionosphere. Earth based receivers record signals 
transmitted from the GPS satellites and the computed 
pseudorange and phase values are used  to calculate Total 
Electron Content (TEC). Computed TEC data and the 
tomographic reconstruction algorithms are used together to 
obtain tomographic images of electron density. In this 
study, a set of basis functions and reconstruction 
algorithms are used to investigate best fitting two 
dimensional tomographic images of ionosphere electron 
density in height and latitude for one satellite and one 
receiver pair. Results are compared to IRI-95 ionosphere 
model and both receiver and model errors are neglected.   

1. INTRODUCTION 

Ionospheric electron density (IED) image can be recon-
structed  from TEC values obtained from recordings of GPS 
receivers. The Earth based receivers record pseudorange and 
phase of  two signals, whose frequencies are 1575.42 MHz 
and 1227.60 MHZ [1]. TEC is defined as a line integral of 
the electron density between GPS satellite and GPS receiver. 
TEC is the number of electrons included in cylinder with 1 
m2 cross-section. Since TEC carries information on time and 
position variability of the ionosphere, it is widely used in 
ionospheric research. 

 
The group delay and phase fluctuation of the two signals 
transmitted from the satellites are proportional to TEC val-
ues [2]. TEC computations can be performed with different 
precision levels and different methods such as Time Delay 
Measurement or Differential Phase Forward Measurement. 
Tomographic reconstruction algorithms and calculated TEC 
values are used together to reconstruct ionosphere electron 
density image for a relevant scenario which is also a func-
tion of the receiver and satellite geometry. Figure 1 shows a 
simplified example ionospheric tomography system. 
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Figure 1. Sample Ionospheric Tomography System 

     
In the above system, Nk indicates electron density in the 
pixel, dk indicates the length of ray occupied by the pixel. 
For these parameters, k takes a value between 1 and 4, and 
TEC value for the ray can be given as  
 
              TEC= ( ) err4N4d3N3d1N1d c +×+×+×           (1) 

 
In (1), c is an estimate constant and err is the error term.  
CIT method is based on this basic concept.  

2. IONOSPHERIC MEASUREMENTS AND 
RECONSTRUCTION ALGORITHMS 

Ionospheric tomography poses some extra physical limita-
tions in the performance of the tomographic algorithms. In 
CIT, receivers are placed on spherical Earth surface at any 
possible location, not necessarily equidistant from each other. 
The number of GPS satellites are limited and they trace a 
path over the receiver not designed for CIT. This causes lim-
ited observation angle and limited number of projection sam-
ples can be collected. Due to these limitations, conventional 
tomographic imaging methods have to be modified to over-
come the low performance. To overcome these difficulties, 
CIT methods which include a priori information about the 
ionosphere are developed [3]. In these methods, ionosphere 
electron density is modelled as a linear combination of two 
dimensional basis functions. Two dimensional basis func-
tions are obtained as the product of  the vertical and horizon-
tal basis functions. Legendre polynomials or Fourier poly-
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nomials are preferred as  horizontal basis functions [1,3], and 
vertical basis functions are usually generated from the for-
ward ionosphere models such as International Reference 
Ionosphere (IRI) [3]. By using the vertical profiles from a 
selected forward model, vertical basis functions can be calcu-
lated. Computational complexity of these methods is propor-
tional the number of horizontal basis functions, so selection 
of appropriate number of horizontal basis function is a criti-
cal parameter.          

Ionospheric tomography system is simulated with one GPS 
satellite and one receiver to collect two transmitted signals 
and compute TEC values. For each satellite position, a TEC 
value is calculated on each receiver that capture signals from 
this satellite and by using this TEC values, it is possible to 
create tomographic images of ionosphere electron density. In 
this measurement setup, each TEC value can be expressed as  

 
                         ∫ ds N(s)=TEC

L
                                          (2)  

and (2) is the line integral of N(s) along the path L. In this 
expression, N(s) is electron density and L is one of rays from 
satellite to receivers. This line integral definition is similar to 
the medical line integral definition given in [4]. Based on this 
definition, TEC value is a sample point in the tomographic 
projection obtained for the satellite position.  
 
In this paper, tomographic reconstruction algorithms such as 
Regularized Least Squares (RLS) [5],  Truncated SVD 
(TSVD) [6] and Total Least Squares (TLS) [7], are imple-
mented and reconstruction errors are presented. In this study, 
ionosphere is modeled as grid structure with 95 pixels on 
vertical line and 29 pixels on horizontal line. It is assumed 
that electron density in each pixel has uniform distribution. 
Ionospheric electron density over height-latitude plane is 
expressed as a serial expansion  as given below: 
 

                             g(r,θ) ≈ ∑
1=

),(
K

k
θrkφkx                            (3) 

In (3), ),( θrkφ = )()( θnvrmu  is a two dimensional basis 

function for  k=m+(n-1)M, m=1,…,M; n=1,…,N, and )(rmu  
is the vertical basis function obtained from IRI-95 model by 
SVD and the )(θnv  is the horizontal basis function. In these 
expressions, K is number of total basis functions, M is num-
ber of vertical basis functions and N  is number of horizontal  
basis functions. r is  the height from sea level and it varies 
between 60 km to 1000 km. θ is the latitude in degrees. 

3. MODEL IONOSPHERE AND BASIS FUNCTIONS 

In this paper, IRI-95 is selected as a reference ionosphere 
model and ionosphere cross-section for [–28° 28°] latitude 
interval for the parameters given in Table 1, is provided in 
Figure 2. It is assumed that the ionosphere is time invariant 
for each satellite positions and for each TEC calculations. 
Vertical basis functions are calculated by using the Singular 
Value Decomposition (SVD) over the IRI-95 model. Hori-

zontal basis functions are selected as Scaled Legendre poly-
nomials, Cut Legendre Polynomials and Haar basis func-
tions [5]. Horizontal basis functions and vertical basis func-
tions are used together to obtain two dimensional basis func-
tions. SVD of the distribution in Figure 2 is used to obtain 
the vertical basis functions which is given in Figure 3. 

 

Figure 2. IRI-95 Electron Density Model. 
 

DATE: year, month, day 2003, 08, 5 
Time: Hour 15.5 LT 
Geographical Longitude 34 
Solar Zenith Angle/degree 65.3 
Dip (Magnetic Inclination)/degree -60.62 
Modip (Modified Dip)/degree -48.14 
Solar Sunspot Number  52.3 
Ionospheric-Effective Solar Index IG12       86.9 

Table 1. IRI-95 Model  Parameters 
 

 
Figure 3. Vertical Basis Functions from IRI-95 Model. 

 
Figure 4, Figure 5 and Figure 6 show the horizontal basis 
functions for Haar, Scaled Legendre and Cut-Legendre, re-
spectively. The Scaled-Legendre polynomials are obtained by 
scaling the standard Legendre polynomials between –28° and  
28° latitudes. 



 
Figure 4. First Four Haar Basis Functions Generated for [–

28° 28°] Latitude Interval. 

 
Figure 5.  Scaled and Orthonormalized Legendre Poly-

nomial for [–28° 28°] Latitude Interval. 
 

 
Figure  6.  Cut and Orthonormalized Legendre Polynomial 

for [–28° 28°] Latitude Interval 
 

 These polynomials are orthonormalized by Gram-Schmidt 
orthogonalization process. The Cut-Legendre is obtained by 
truncating the standard Legendre Function between –28° and  
28° latitudes. Then the truncated polynomial is orthonormal-
ized by Gram-Schmidt orthogonalization process. Haar basis 
functions are also mapped to [–28° 28°] latitude interval and 
x-axis is modelled as a distance between  –28° and  28° lati-
tudes in which the one degree is equal to 111 km.  

4. RESULTS AND DISCUSSION 

The optimum number of basis functions is an important pa-
rameter in performance of the reconstruction algorithms. 
Reconstruction error can be defined as  

 

                           ε (N,M) 
G

G-G )(ˆ MN,
=                        (4) 

 
where G  is electron density matrix obtained from IRI-95 
model for [–28° 28°] latitude interval, and )(ˆ MN,G  is the 
reconstructed electron density matrix. Each column of G in-
cludes electron density variations according to height and is 
constituted by g(r,θ) given in (3). Due to this relation, first 
element of G is equal to )1,1( θrg which is the sample for 
1000 km and -28° degree.  The error with respect to the num-
ber of horizontal basis function for RLS, TLS and TSVD 
reconstruction algorithms is given in Figure 7, Figure 8 and 
Figure 9 for Scaled Legendre, Cut-Legendre and Haar Wave-
lets as horizontal basis functions, respectively. From these 
figures, the optimum number of horizontal basis functions for 
each algorithm where M is set to 3, is determined as the point 
where error drops to a value where increasing the number of 
basis functions do not reduce the error further. In Table 3, the 
error norm,  ε(Nopt,3), for total reconstruction is presented for 
various reconstruction algorithms and basis functions. Nopt is 
the optimum number of horizontal basis functions obtained 
from Figure 7, Figure 8 and Figure 9. In Figure 10, the re-
constructed image for RLS algorithm and Cut Legendre basis 
is given.  

 
     Figure 7  Error Variations for Scaled Legendre polynomial 

 

 
       Figure 8 Error Variations for Cut Legendre polynomial 
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     Figure 9 Error Variations for Haar basis functions 

 

 
Figure 10. Reconstruted Image for TLS and Haar Wavelets 

 
 Haar Scaled-Legendre Cut-Legendre 

RLS 28 32 32 
TLS 28 54 32 
TSVD 28 32 32 

Table 2. Number of  Horizontal basis functions 
 

 Haar Scaled-Legendre Cut-Legendre 
RLS 0.2795 0.5860 0.1798 
TLS 0.1813 1.4852 0.2319 
TSVD 0.2797 0.6116 0.1798 

Table 3. ε(Nopt,3) for reconstruction algorithms  
 

RLS Matrix product Matrix Inversion Regularization 
TLS SVD Summations Divisions 
TSVD SVD Summations Divisions 

Table 4. Mathematical Operations for Algorithms 
 

Given in Table 3, Scaled Legendre polynomial has the worst 
performance than Cut Legendre and Haar Basis functions. 
RLS and TSVD has same performance as expected from the 
mathematical details explained in [6]. In Table 2, the number 
of horizontal basis functions are given for reconstruction 
algorithms. As can be seen from Table 2, computational 
complexity for RLS with Cut Legendre is more than TLS 
with Haar basis functions due to the number of horizontal 

basis functions used to ionospheric reconstruction. In Table 
4, mathematical computations considered for all reconstruc-
tion algorithms are given. As seen from Table 4, RLS re-
quires matrix product, matrix inversion and regularization 
procedure. Mathematical operations needed by matrix multi-
plication is order of n2 and lower bound is given by 2.5 n2 
[8]. Matrix inversion requires 4n3/3 - n/3 multiplica-
tions/divisions and 4n3/3 - 3 n2 + n/6 additions/subtractions 
[9]. TLS algorithm needs SVD computations and the number 
of computations to compute the SVD of an mxn matrix is 
approximately 4mn2 - 4n3/3 if only the singular values are 
needed [10].  

5. CONCLUSION 

In this paper, the performance of RLS, TLS and TSVD algo-
rithms are compared for three different horizontal basis func-
tions, namely Haar Wavelets, Scaled Legendre Polynomials 
and Cut-Legendre Polynomials. The electron density is mod-
elled by the IRI-95 for [–28° 28°] latitude interval. Only one 
transmitter and one receiver is used in the simulated scenar-
ios. It is observed that among all basis functions, the smallest 
number of horizontal basis is obtained by Haar Wavelets for 
all reconstruction algorithms, reducing the computational 
complexity.  For the given scenario, for the reconstruction 
algorithm and basis function set, the total error is minimized 
for different pairs. It is expected that as the numbers of satel-
lites and receivers are increased, the reconstruction error will 
be further reduced.  
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