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ABSTRACT

In this paper a new approach to synthetic aperture radar
(SAR) data processing, is presented. The method properly
takes into account the spatial truncation of the data in the
azimuth direction, due to the finite recording frame. It al-
lows an enlargement of the well focused area, assuring
lower reconstruction error, respect to conventional process-
ing techniques. The good performance of the method is
demonstrated through reconstructions from simulated data,
putting emphasis on the well focused signals.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is a microwave imaging
system carried out by a moving platform emitting and then
receiving pulses at a given pulse repetition frequency. Col-
lected data are then coherently processed to generate high
resolution images of the illuminated scene. The received data
are related to the reflectivity function to be estimated through
a space varying convolution [1], truncated in the motion di-
rection of the platform. SAR image focusing amounts to
search for a finite resolution estimate of the ground reflectiv-
ity function, i. e. belonging to a finite dimensional space,
starting from the knowledge of the received signal acquired
over a finite recording interval. Then, it can be stated as a
deconvolution problem from truncated data. This is an ill
posed problem, that is usually met in the field of image resto-
ration [2]. Conventional processing techniques [1], that make
use of a matched filter and operate in the Fourier domain,
implicitly regularize the problem by forcing to zero the data
outside the recording interval. For this reason, only a part of
the resulting image, of smaller dimension respect to the data
dimension, is well focused. This paper describes a new ap-
proach to SAR data processing that explicitly takes into ac-
count the data truncation. Moreover, the method allows the
regularization of the problem introducing a convenient repre-
sentation of the signal to be estimated involving a lower
number of unknowns.

The success of the method is demonstrated through recon-
structions from simulated data, showing a noticeable
enlargement of the well focused area and an improvement of

fidelity respect to conventional approaches. Moreover it en-
ables the incorporation of possible a priori information on
the scene directly in the reconstruction process. This features
can be conveniently exploited in many applications, such as
edge detection and image segmentation and image classifica-
tion.

2. STATEMENT OF THE PROBLEM

In a radar system the (noise-free) signal received after back-
scattering can be described by the discrete linear convolu-
tion:

y=hx*x, (D)
where x=[x; x5 ...... xM]T is the discretized reflectivity of the
ground, h=[A; A, ...... hp]T is the system impulse response,
and y=[y,; y5 ...... yal", with N=M+P-1, is the radar received

signal.

Note that, while the dimension P of the impulse response is
limited by the system characteristics (for instance by the an-
tenna angular aperture), the dimension of the reflectivity vec-
tor is limited by the acquisition interval of the radar receiver,
so that its value M is much larger than P. Moreover, we refer
to one-dimensional signals for simplicity, but our method it
can be easily generalized to the SAR 2-D signals (raw data).
The discrete model (1) can be also written, exploiting the
convolution theorem, in the following way:

y=F'[F(h)oF(x)]. Q)

where F is the discrete Fourier Transform (DFT), F' is the
inverse discrete Fourier Transform (IDFT), and © is the
Hadamard product, i.e. the vector element-wise product. Fre-
quency domain model (2) and time domain (1) provide the
same result (the linear convolution) if both h and x are zero-
padded (through the zero-padding matrix Z) to N-length vec-
tors before performing DFT. It is easy to verify that the zero-
padding matrix Z, when applied to a M-order vector to pro-
vide a N-vector one, is given by:
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where Iz, 1s the M-order identity matrix, and Og.ppxy 1S @
[(N-M)xM]-order null matrix.
Eq. (2) becomes:

y=F'[F(Zh)OF(Zx)]. @)
Since F' can be written as a matrix operator F [3], the N-th-

order vector of the DFT of h can be written as the following
matrix vector product:

h=F(Zh)=FZh. (5)

Analogously, the IDFT F' can be expressed in matrix form
as the complex conjugate of F.
If we introduce a new diagonal matrix D, defined as

h(0) 0 0
b| O h(:l) o ’ ©
0 0 h(N-1)

where (n) are the elements of vector h, model (2) can be
written in the following way:

y=F'DFZx. 7

Models (7) and (1) are perfectly equivalent: when they are
applied to the same reflectivity x, they provide the same re-
ceived signal y.

The actual world model is given by:

y=h*x+n=

y ®)
=F DFZx+n,

where n represent additive white Gaussian noise (AWGN).

In practise, the SAR received data used to form the SAR

images are a subset of y.

In Fig. 1 it is shown such subset is taken by spatial truncation

of y along the flight direction.
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Figure 1: Acquisition of a SAR raw data subset.

If we suppose to extract K samples of the N samples of the
received data vector y, such truncation can be explicitely
taken into account in the received data model by introducing
a truncation operator:

y, =TF'DFZ x + n )
oo — ¥ -
Kx1 KxM Mx1l Mx1

where T is the truncation [KxN]-order matrix defined as:
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N+K+N,=N, and I and 0 can be interpreted extending previ-
ous definitions.

3. IMAGE FORMATION BY TRUNCATED DATA

In Fig. 1 it is shown that the received data are recorded over
the finite space interval of length a, and contain information
on the ground reflectivity pattern of extension b, always
greater than a.

By adopting the same sampling step for y, and x, as usually
done, it will result that x (M unknown of the problem) exhib-
its more samples that y, (K available data): M =K. Then, it
has to be considered that when K data are assigned, at most
the same number of unknown parameters can be univocally
determined. Such under-determined mapping cannot be in-
verted unless regularization is adopted.

The standard data processing of model (9) is implicitly regu-
larized [1], because it allows to get more image (unknown)
samples than (non trivial) data samples by forcing to zero the
data that are outside the recording interval. It suffices to add
zero samples to y, till the M-th one (a new zero padding ma-
trix Z,), and to perform the mapping inversion (basically a
deconvolution):
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The previous solution procedure is equivalent to search for
an estimate X such that its convolution with h will simulta-
neously matches the received signal in the part where the
data are available, and matches zero in the part where the
data have been forced to zero by Z,. This solution will neces-
sarily be different from the actual ground reflectivity function
that matches the recorded received signal and does not pro-
duce a signal equal to zero outside the recording interval. The
resulting estimation will exhibit a good accuracy only in the
central part of the whole computed reflectivity, namely a
zone formed by (K-P+1) signal samples.

The new procedure proposed in this paper amounts to take
into proper account the nature of mapping (9), in particular
its truncation, its under-determined nature, and the nature of
noise. As far as the under-determined nature of the mapping
is concerned, in order to restore the equality between data
and unknowns, we introduce the following transformation
operator:

x =Px,,

(12)
p.cX M.
P is a mapping from a lower dimensional space to a higher
dimensional one, and it typically consists of an interpolation
(Fourier oversampling, spline-based, wavelets-based, etc.). If
such operator is chosen properly, it results that the model can
be well approximated by:

y, =TF 'DFZPx; +n = Ax, +n, (13)

where A 2 TF'DFZP. Now, exploiting the linear nature of
mapping (13), and the AWG nature of noise, an ML solution
in the complex field [3] can be adopted:

-1
% =(A"A) Aly,

B (14)
=(P"Z"F'D"FT'TF'DFZP) P"Z'F'D"FTy,

where superscript “H” denotes “Hermitian” matrices, and
“T” denotes “transpose” matrices.

It is easy to note that transposition of above defined trunca-
tion T is equivalent to a particular zero-padding, where part
of the zeros are positioned at left, and part at right of the se-
quence, and transposition of above defined (3) zero-padding
Z is equivalent to a particular truncation, where truncation is
made on the right part of the sequence.

The processing scheme (14) consist essentially of zero pad-
ding and truncation operators (no time consuming), of ele-
ment-wise products (no time consuming), of Fourier trans-
forms and interpolation operators, plus a matrix inversion.
These last operations requires computational times. In par-
ticular, the formal inversion of the square matrix A"A can be
in practice a prohibitive task due to the huge dimension of

the involved actual vectors. In that case the inversion can be
performed by making resort to iterative schemes determining
the MSE solution:

X, =argminy ¢(x), ¢(x)= ||Axl —yt”z. (15)

In order to minimize ¢(x;) we can adopt a conjugate gradient
based method [4]. Due to the huge amount of data, it is con-
venient to evaluate the formal expression of the gradient, that
is given by:

Vg =2A"[Ax,-y,], (16)

and, the expression of the coefficients of the quadratic func-
tion ¢(xﬂ-/1Ax,)=alz+bl+c, along which the minimization
line is performed step by step:

a=|Ax|’, b=2Re(Ax,Ax)), c=|Ax,~y[’.(17)

It is easy to show that the optimal step is Aop=-b/2a.

4. NUMERICAL EXPERIMENTS AND DISCUSSION

To show the good performance of the presented method,
three significant numerical experiments have been performed
on simulated data.

The first experiment is related to the case of three targets,
where two of them are spaced more than a full resolution
cell. The radar received signal has been truncated on left
sides, in such a way that the response of the right target has
not been interested by truncation. A full spatial resolution is
expected for the right target, and a worse resolution is ex-
pected for the left lateral targets. The resulting spatial resolu-
tion after truncation is lower than the distance between left
side pixels, so that they can be still distinguish after image
formation. The result of the conventional processing algo-
rithm (11) and of the new proposed algorithm (14) are shown
in Figs. 2 (top and bottom, respectively). The conventional
processing is unable to recover the spatial resolution for the
target positioned in the sequence portion interested by trun-
cation. This effect is due to the presence of zero samples
forced by Z, in (11), not corresponding to a true physical
condition. The best theoretical resolution (better for the right
target, worse for the left ones) is instead fully recovered ap-
plying the new proposed algorithm (14).

The second experiment has been proposed to test the per-
formance with a continuous reflectivity function. The data
relative to a rect-wise continuous pattern has been simulated.
The radar received signal has been truncated on both sides, in
such a way that the response of the central part has not been
interested by truncation. The signal obtained by using con-
ventional processing and the presented method are presented
in Fig. 3 (top and bottom, respectively). The enlargement of
the focused area is still evident. In particular, the reflectivity
pattern reconstructed with the proposed method matches a



rect function better than the one obtained through the con-
ventional focusing.
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Figure 2: Three targets reflectivity reconstructed by using the con-
ventional method (top), and the proposed method (bottom).
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Figure 3: A rect-wise continuous reflectivity pattern reconstructed
by using the conventional method (top), and proposed method (bot-
tom).

The third experiment has been proposed to evaluate the
phase-preserving performance of the proposed algorithm.
The preservation of the signal phase is very important in ra-
dar imaging application. It suffices to think to SAR interfer-
ometry, and to all coherent processing applications. The data
relative to a constant reflectivity amplitude pattern with a
liner phase has been simulated. The radar received signal has
been truncated. The reference signal phase is plotted with the
solid line in Fig.4. The signal phase obtained by using con-
ventional processing and the presented method are presented
in Fig. 4 (dotted line, and dashed-dotted line, respectively).
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Figure 4: Reference signal phase (solid line), signal phase obtained

by conventional processing (dotted line), and signal phase obtained
by new proposed processing (dashed-dotted line).

In all presented numerical experiments it appears evident the
quality improvements due to the application of the proposed
algorithm with respect to the conventional one.

5. CONCLUSIONS

A new algorithm to process truncated radar data has been
proposed in this paper. The proposed technique takes into
proper account the present sequence truncation, and the un-
der-determined nature of the linear model between data and
unknowns. In particular, it allows to avoid the fictitious zero
padding, necessary to restore the well-posedness of the prob-
lem, but devoid of physical meaning. The presented results
show the effectiveness of the proposed method with respect
to the results relative to the application of the conventional
method.

It has to be remarked that the proposed method can be ap-
plied to all the situation where data truncation (spatial or
temporal) is present.
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