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ABSTRACT 

This paper deals with the three-dimensional Autoregressive 

(3-D AR) model parameter estimation from noisy data. We 

develop an algorithm to estimate the transversal AR parame-

ters corresponding to the Quarter-Space (QS) region of sup-

port without a priori knowledge of additive noise power. The 

transversal parameters and the noise variance are both ob-

tained as a solution of a quadratic eigenvalue problem. The 

performance of the proposed algorithm is evaluated by nu-

merical examples.  

1. INTRODUCTION 

Recently, three-dimensional autoregressive (3-D AR) mod-

els have been applied in 3-D data processing [1]-[4]. For 

example, the 3-D AR model is used for modelling, analysis, 

synthesis of a set of homogenous 3-D textures [1][2]. It is 

well known that any model-based approach for data repre-

sentation and processing involves two important stages, viz., 

i) the determination of the model order, and ii) the estima-

tion of the transversal model’s parameters. This problem has 

been extensively treated for the 1-D AR model but , in the 3-

D case, a few papers available and they often deal with one 

or the other estimation problem [5]-[7]. For example, in [5] 

the Yule-Walker (YW) equations of noiseless 3-D AR model 

are solved efficiently via a recursive algorithm, which takes 

advantage of the cubic Toeplitz structure of the autocorrela-

tion matrix. Dealing with the model order, the authors in [7] 

proposed an algebraic method for Gaussian 3-D quarter 

space AR model and presented a comparative study with the 

informational criterion methods. Good results are obtained 

in the absence of measurements noise. However, in the pres-

ence of noise; these methods provide seriously degraded 

results. So in this paper we present an approach which take 

into account the noisy data case to reduce the bias of the 

estimated parameters. 

The aim of this paper is to develop a numerical algorithm to 

estimate the 3-D AR transversal parameters, and the noise 

variance from a finite number of noisy measurements. The 

AR model order is assumed to be known a priori. The 3-D 

AR model considered here is assumed to be Gaussian, stable 

and spatial shift invariant. The proposed algorithm is in-

spired by the algorithm proposed for one-dimensional AR 

process in [8]. The AR parameters are generally obtained via 

the resolution of the YW equations. In the 1-D case, the YW 

equations are easily represented in matrix format.  However, 

the 3-D AR processes leads to a complicate set of YW equa-

tions caused by the region of support. Thus, we first address 

in section 2 the problem of expressing the autocorrelation 

function (ACF) matrix of 3-D QS AR random fields in terms 

of the model parameters.  In section 3, we introduce the 

noisy 3-D AR model and develop our method to estimate the 

AR parameters and the noise variance. In Section 5, we pre-

sent numerical examples.  

2. NOISELESS 3-D AR MODEL 

Let { })t,n,m(x  be a second-order zero-mean stationary 3-D 

ergodic process satisfying a causal QS 3-D AR model of 

order )p,p,p(p 321=  

 )t,n,m(e)kt,kn,km(xa  
1

1

2

2

3

3

321

p

0k

p

0k

p

0k
321k,k,k =−−−∑ ∑ ∑

= = =

,    (1) 

where { }
321 k,k,ka  are the transversal AR coefficients such that 

1a 0,0,0 =  , the input generator process { })t,n,m(e  is  assumed 

to be zero-mean, white noise, 3-D Gaussian process with 

variance 2
eσ .  

We recall that the autocorrelation function (ACF) of the 3-D 

homogenous process is defined as follows: 

 ])ht,hn,hm(y)t,n,m(y[E)h,h,h(r 321321y −−−= ,   (2) 

where [.]E  denotes the mathematical expectation operator. 

According to (1), the ACF satisfies the following autore-

gressive 3-D Yule-Walker (YW) equations  
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where )h,h,h( 321δ  is the 3-D Kronecker delta function. 

 To represent the 3-D YW equations in the matrix format, we 

propose the following construction :     

For a fixed )h,h,h(h 321= , we concatenate the 3-D AR pa-

rameter coefficients { }
321 k,k,ka  ii p,,0k L= ; 3 ,2 ,1i = , and the  

corresponding ACF samples  into two 

1)1p)(1p)(1p( 321 ×+++  vectors  θ  and 32

1

h,h

h
r  as follows: 
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where, T  is the transpose operator, and 
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and  

 [ ]
T

321212121
p,k,k1,k,k0,k,kk,k

a;;a;a L=θ , 

 [ ]Tp,k,k0,k,k0,k,kk,k 321212121
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with )kh,kh,kh(rr 332211xk,k,k 321
−−−= ,  

Thus, equation (3) can be rewritten: 

 ( )321
2
e

h,h
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T h,h,hr 32

1
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which leads to the 3-D YW equations in a matrix form:  

 hθRx
2
eσ=              (8) 

where h  has dimensions ( )( )( ) 11p1p1p 321 ×+++  such as 

[ ]T0,,0,1 L=h . The matrix xR  is a block-block Toeplitz ma-

trix (cubic Toeplitz). It is structured as block Toeplitz matrix 

of size ( ) ( )1p1p 11 +×+   
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where each block entry kR  is a ( ) ( )1p1p 22 +×+  Toeplitz-

block-Toeplitz matrix of the form 
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each submatrix l
kR  is a ( ) ( )1p1p 33 +×+  Toeplitz one as 
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Since the input variance 2
eσ  is unknown, the system in (8) 

cannot be used directly to estimate the AR transversal pa-

rameters. Thus, a constrained system is needed. Indeed, 

since the first element of θ  is assumed to be one i.e. 

1a 0,0,0 = , we eliminate the first equation in (8) and move the 

first column of the remaining matrix to the right-hand side 

of the system to obtain the following modified system: 

 r~
~~

x −=θR                  (12) 

Both the two vectors θ
~
 and r~  have dimensions of  

( )( )( )( ) 111p1p1p 321 ×−+++  where θ
~
 contains the unknown 

transversal parameters and r~  contains the corresponding 

ACF sample. Therefore, the AR parameters can be deter-

mined by solving (12). The input variance 2
eσ  can be com-

puted using (3) for ( ) ( )0,0,0h,h,h 321 =  

3. NOISY 3-D AR MODEL   

Assuming that, the process )t,n,m(x  is corrupted by zero 

mean white noise { })t,n,m(v , to yield the 3-D observable 

noisy observation 

 )t,n,m(v)t,n,m(x)t,n,m(y +=            (13) 

where the additive noise { })t,n,m(v  and the input generator 

process { })t,n,m(e  are assumed mutually independent. The 

signal-to-noise ratio (SNR) of the system is defined by 
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2
v
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where 2
xσ  and 2

vσ  are respectively the variance of the signal 

and  the variance of the additive noise. 

 In the presence of noisy data, the AR parameters estimated 

from the YW equation described in the previous section will 

be biased since  

 )h,h,h()h,h,h(r)h,h,h(r 321
2
v321x321y δσ+=         (15) 

However, this method is able to estimate the AR model pa-

rameters for large SNR. When the SNR is small, the estima-

tion results are influenced by the large Gaussian noise. 

More explicitly, the 3-D YW equations which relate the AR 

parameters with the ACF of the noisy process have the 

following form: 
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where [ ] [ ] [ ] [ ]321 p,0p,0p,0p,0 ××= .  

Considering the coupled equation (15) and (8), it is clear 

that the 3-D YW equations can be represented in the matrix 

format as follows:  

 [ ] hθIR
2
e

2
vy σσ =−                (17) 

where yR  is block-block Toeplitz autocorrelation matrix of 

the noisy process structured as xR  , and I  is the identity 

matrix of dimensions : 

 ( )( )( ) ( )( )( )1p1p1p1p1p1p 321321 +++×+++ .     

 The system of equations (17) cannot be solved directly 

since it contains ( )( )( )1p1p1p 321 +++  nonlinear equations in 

the AR parameters and the noise variance. However, by 

choosing iii p2hp ≤≤ , such as ( ) ( )321321 p,p,ph,h,h ≠ , for
 

3,2,1i = , in (16) the resulting equations are linear and will 

not involve )0,0,0(ry   
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This system of equations is the 3-D version of the extended 

YW equations (EYW). It makes it possible to estimate the 

AR parameters using a block-block Toepltiz system ob-

tained by an extend technique as the one used in the noise-

less case (12). Unfortunately, the EYW method provides 



poor estimation accuracy due to the use of high lags autocor-

relation estimates, which tends to be inaccurate and have a 

larger estimation variance [8]-[10]. To compensate for errors 

in the estimated ACF lags, the overdetermined extended YW 

equations (OEYW) have been used in 1-D case [8] [11]. 

Their extension in the 3-D case can be defined in the matrix 

form as follows: 

   0θRy =
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and  
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where ii pq >
 for 3,2,1i = . The linear system of equations in 

(18) also evades 
)0,0,0(ry  and uses more equations than un-

knowns parameters. The AR parameters can be obtained 

solving (19). A problem with the EYW and OEYW methods 

is that they use only a set of linear equations corresponding 

to large-lag autocorrelation sample. In fact, the ACF of the 

noisy process always includes significant errors at all lags 

for 11 ph > , or 22 ph > , or 33 ph >
 mainly resulting from the 

additive noise and the use of a small number of data. In ad-

dition, these methods don’t take into account the first 
( )( )( )1p1p1p 321 +++

 nonlinear equations based on relatively 

lower ACF lag estimates. To alleviate this problem we pro-

pose in the following parts a method based on joint linear 

and nonlinear equations.      

3.1 The proposed estimation method   

According to the previous section, the AR parameters and the 

variance noise satisfies two systems of equations. The first 

one given in (17) is nonlinear; the second described in (19) is 

linear. The nonlinear system can be rewritten as follows: 

 [ ] 0θBR =− 1
2
vy σ              (23) 

 where yR  is obtained by removing the first line in the matrix 

yR . The matrix 1B  is such as: 
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The coupled equations (19) and (23) can be combined and 

written as a generalized eigenvalue problem: 

 [ ] 02
v =− θBR σ               (25) 

where the two matrices R , and B  are defined by:  
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Consequently, the AR parameters and the noise variance sat-

isfy the following quadratic eigenvalue problem:  

 [ ] [ ] 0BRBR =−− v
T λλ                 (27)  

which can be written as follows: 

 [ ] 0HHH =++ v2
2

10 λλ                  (28) 

where 0H , 1H , and 3H  are three symmetric matrices given 

by  RRH T
0 = ,  ( )RBBRH

TT
1 +−= , and BBH

T
2 = . 

The classical approach to solve the quadratic eigenvalue 

problem is to turn them into linear eigenvalue problems by 

introducing a new vector λν=w [12]. In our case this lead to 

the double size generalized linear eigenvalue problem: 
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where ,H  and G  are defined by 
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where I  is the identity matrix of dimensions nn×  where 

( )( )( )( )11p1p1pn 321 −+++= . This approach allows determining 

eigenvalues and eigenvectors numerically, since for the gen-

eralized linear eigenvalue problem like (29) the mathematical 

methods are well established [13]. The solutions of (29) are a 

set of complexes numbers and their conjugates. If [ ]( )T
vw,λ  

is one of these solutions, then v  is an eigenvector of (28) 

associated to the eigenvalue λ . Furthermore, the eigenvalues 

solving (29) are the estimates of the additive noise variance 
2
vσ . Only one eigenvector solving (28) corresponds to the 

exact transversal AR coefficients. For the noiseless case, 

there is one solution to (19) and (23) associated to the eigen-

value 0=λ . Then, for the noisy case, the correct solution 

i.e., the transversal AR coefficients, is the eigenvector corre-

sponding to the only real eigenvalue obtained as a solution 

for (28). This single real eigenvalue is the estimate of the 

variance noise. Finally, the variance of the input generator 

process can be estimated using (16) for ( ) ( )0,0,0h,h,h 321 = .  

The proposed method can be summarized as follows: 

  1. Compute the ACF estimate ( ).,.,.r̂y . 

  2. Form the matrices R , and B  defined in  (26). 

  3. Construct the matrices ,H  and G  defined in (30). 

  4. Solve the generalized eigenvalue problem [ ] 0GH =− bλ  

 in λ  and b . 

5. The estimate of the noise variance is the real generalized     

 eigenvalue λ  solving 4. 

6. The transversal parameters are the first n   elements of      

  the eigenvector 0b  associated to λ  obtained in 4.  



4.  EXPRIMENTS RESULTS 

In this section, we present a numerical example to provide 

a verification of the theoretical results. We generate a noisy 

observations )t,n,m(v)t,n,m(x)t,n,m(y += , of size 

128128128TNM ××=×× , where )t,n,m(x is a QS 3-D AR 

)1,1,1(  process given by  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )t,n,me1t,1n,1mx5535.0

1t,n,1mx738.01t,1n,mx675.01t,n,mx9.0

t,1n,1mx615.0t,n,1mx82.0t,1n,mx75.0t,n,mx

+−−−+

−−−−−−−+

−−−−+−=

 

The additive noise )t,n,m(v  is zero mean white Gaussain 

noise with a variance 24.362
v =σ  to produce signal-to-noise 

ratio of 10 dB ( )dB10SNR = .  

To build the matrix yR
~

 described in (17) we used the pa-

rameters 11 pq = , 22 pq = , and 33 pq = . The ACF sample 

was computed using the unbiased estimate given by 
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The estimated AR parameters and the noise variance using 

the developed method, and the OEYW method are pre-

sented in the table I. We remark that, for a moderate value 

of SNR, the results of the proposed method outperforms 

those obtained with the OEYE method. However, in prac-

tice, some technical modifications have been introduced in 

the proposed algorithm. Indeed, due to the errors in estimat-

ing the autocorrelation block matrix, all the eigenvectors 

and eigenvalues solving quadratic eigenvalue problem ap-

pear in complex conjugate. Thus, the eigenvalue corre-

sponding to the noise variance 2
vσ  is also complex. As an 

alternative, in this example we have selected the eigenvalue 

having smallest modulus as the noise variance estimate, and 

the transversal parameters as the real part of its correspond-

ing eigenvector.  

 
 True 

 coefficients 
Proposed 
Method 

OEYW Method 

0,1,0a  -0.750 -0.7136 -0.8156 

0,0,1a  -0.820 -0.8223 -0.8534 

0,1,1a  0.615 0.5913 0.6731 

1,0,0a  -0.900 -0.9055 -0.9338 

1,1,0a  0.675 0.6456 0.7458 

1,0,1a  0.738 0.7478 0.7787 

1,1,1a  -0.5535 -0.5375 -0.5970 

2
eσ  

10 10.505 15.3677 

2
vσ  

36.24 34.8530 43.6763 

TABLE I: RESULTS OF ESTIMATED PARAMETERS 

5. CONCLUSION 

In this paper, we have addressed the problem of estimating 

the parameters of tree-dimensional autoregressive random 

fields corrupted by additive white noise. The 3-D AR model 

considered here is assumed to be Gaussian, stable and spa-

tial shift invariant with quarter-space region of support. We 

first addressed the problem of expressing the 3-D Yule 

Walker equations of noiseless 3-D AR field in matrix form.   

This expression was then employed in the noisy case to 

show that the model parameters are a solution of a quadratic 

eigenvalue problem. The performance of the proposed 

method is evaluated using numerical examples.  
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