
MULTIMODAL BIOMETRIC SCORE FUSION: THE MEAN RULE VS. SUPPORT 
VECTOR CLASSIFIERS  

Sonia Garcia-Salicetti, Mohamed Anouar Mellakh, Lorène Allano, Bernadette Dorizzi 
DEPARTEMENT ELECTRONIQUE ET PHYSIQUE 

INSTITUT NATIONAL DES TELECOMMUNICATIONS 

9 RUE CHARLES FOURIER, 91011 EVRY FRANCE 

Telephones: (33-1) 60.76.44.30 , (33-1) 60.76.46.73 
Fax: (33-1) 60.76.42.84 

 { Sonia.Salicetti, Mohamed.Anouar_mellakh, Lorene.Allano, Bernadette.Dorizzi}@int-evry.fr

ABSTRACT 
Recently, a discrepancy in results has appeared in the litera-
ture concerning score fusion methods, classified in �combi-
nation methods� and �classification methods� [1]. Some 
works suggest that a simple Arithmetic Mean Rule (AMR) 
can outperform some training-based methods on multimodal 
data [2], while others favour, among other trained classifiers, 
a Support Vector Machine [3]. This paper makes a compara-
tive study of the Arithmetic Mean Rule (AMR) coupled with 
different state-of-the-art normalization techniques [4, 5] and 
a linear Support Vector Machine (SVM), in the framework 
of voice and on-line signature scores fusion. Two experi-
ments differing in the difficulty to discriminate genuine 
from impostor accesses are carried out on the BIOMET da-
tabase [6].  

1. INTRODUCTION 

Multibiometrics, that is the verification of the identity of a 
person by more than one biometric trait, is nowadays a 
promising research area, that has generated expectations as 
an alternative in solving, among other problems, perform-
ance requirements in real applications. In general, it is not 
easy to combine biometric traits at the feature level, which 
explains why so often score fusion is performed. In this 
framework, many fusion techniques have so far been com-
pared; they can be classified as score combination rules op-
posed to statistical learning techniques. On one hand, recent 
works in multimodal biometrics show experiments in which 
a simple mean rule performs better than two other classifica-
tion schemes, a decision tree and a Linear Discriminant 
Analysis (LDA) coupled with a minimum distance rule [2]. 
On the other hand, some other works in the literature have 
compared the mean or a weighted mean rule to a Support 
Vector Machine: one in the framework of fusion (fingerprint 
with voice) based on signal quality for a mobile application 
[3]; another in different conditions of noise in the speech 
signal for audio-visual fusion [7]. Both works report that the 
trained classifier outperforms the mean or weighted mean 
rule [3,7].  
Our aim in this work is to study further this apparent contra-
diction in the literature, and also to open the discussion 
about the limits and advantages of both methods. Indeed, the 

Arithmetic Mean Rule (AMR) certainly requires no training, 
but at the price of a previous normalization of scores. Such 
normalization is not straightforward; indeed, according to 
which normalization method is used, results can vary a lot. 
Many normalization schemes have so far been studied [4,5]; 
they rely on the genuine and impostor distributions, that is 
on a statistics on the used database. Among the most effi-
cient, the so-called �adaptive normalizations�, aim at reduc-
ing the overlap between the genuine and impostor distribu-
tions. To this aim, normalizing output scores of different 
biometric systems requires that part of the data is devoted to 
tuning normalization, and the rest to testing the method, 
exactly as training-based methods. This is in general not 
mentioned in the literature.  
Our statement is that the crucial factor is the relative posi-
tion of the impostor and genuine distributions, sometimes 
leading to simple configurations in which genuine and im-
postor data are easy to discriminate, or to more complex 
configurations with an important overlap of both distribu-
tions. In the former case, the AMR with a �standard� nor-
malization, that is a transformation performing a rescaling of 
each expert�s scores to a given interval, may be sufficient. In 
the complex configuration, a statistically trained classifier as 
a SVM performs much better; besides, it requires no nor-
malization of scores. Also, in the same conditions, the AMR 
with score normalization via a posteriori probabilities, that is 
a normalization based namely on the distributions of client 
and impostor scores, performs as well as the SVM. 
It is clear that the more modalities are fused, the more it will 
be easy to discriminate impostors from clients; but using a 
lot of modalities is a burden in an applicative context. Thus, 
a multimodal system should be able to face complex situa-
tions, which is the case in the presence of noise. This aspect 
will actually become crucial in mobile applications.  
The former analysis explains the methodology that we have 
chosen in this paper: we perform fusion of voice and on-line 
signature data from the BIOMET database [6]; then we in-
troduce noise in the speech data to generate two configura-
tions of the clients/impostors bimodal distributions, a simple 
one and a more complex one. We compare in both cases the 
AMR and a SVM. We demonstrate the superiority of the 
SVM and of the AMR scheme with a posteriori probabilities 
normalization in the complex configuration.   
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2. FUSION OF ON-LINE SIGNATURE AND VOICE 

The bimodal fusion system is composed of a signature veri-
fication system described in [8] and a text-independent 
Speaker Verification system described in [9]. We briefly 
introduce in the following such systems and two fusion 
methods: AMR and SVM. 

 
2.1 The Signature Verification System 
Each writer's signature is modelled by a continuous left-to-
right HMM. The system exploits a fusion strategy of two 
complementary information provided by both the HMM 
likelihood and a �segmentation vector� obtained from the 
Viterbi path of the HMM modelling a given writer.  

 
2.2 The Text-independent Speaker Verification System 
This system is detailed in [9]. Considering a simple hypothe-
sis test between two hypotheses H (X has been uttered by ) 
and H* (X has been uttered by another speaker), the sys-
tem�s output score is: [log (P(X)) � log (P*(X))] where 
P(X) and P*(X) are the probability density functions associ-
ated to the densities of H and H* given X. A single speaker-
independent model is used to represent P*(X). This model, 
also called Universal Background Model (UBM) [10], corre-
sponds to a 256 components Gaussian Mixture Model 
(GMM) with diagonal covariance matrices. Each client 
model is obtained by a mean-only Bayesian adaptation of the 
UBM using associated training speech data. The decision 
score for a test sequence corresponds to the mean log-
likelihood ratio computed on the whole test utterance.  

 
2.3 The Fusion Methods: AMR and SVM 
2.3.1   Fusion by AMR with associated normalizations 
We combine the two monomodal scores by means of a sim-
ple AMR after performing a normalization of these scores. 
We studied 3 types of normalization: the first one is based on 
the Min-Max normalization [4], the second one is referred in 
the state of the art as �Tanh estimator� [4], and has given the 
best results in previous experiments reported in [5], and the 
last uses a posteriori class probabilities.  
We define the �Min-Max� normalization of score s of one 
monomodal expert as n=(s-m)/(M-m) where M is the maxi-
mum and m is the minimum of all scores. We consider the 
mean () and standard deviations () of both the client and 
impostor distributions in the training database, and set: 
m=imp-2imp and M=cl+2cl. Indeed, assuming that genu-
ine and impostor scores follow Gaussian distributions, 95% 
of the values lie in the [] interval; following this 
model, our choice of m and M permits to cover most of the 
scores. The values higher than M or lower than m are thresh-
olded. This linear normalization maps the score in the [0,1] 
interval.  
The �Tanh Estimator� normalization of score s is given by: 
n=0.5[tanh(0.01*(s-)/)+1], where  and  are chosen as 
cl and cl since it gives the best results, as reported in [5].  

Finally, the last normalization (called Bayes normalization in 
the following) uses the a posteriori client class probability 
P(C/s) given score s, as a normalized score. The estimation 
of the a posteriori probabilities is done via the Bayes rule:  
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where P(C) et P(I) are respectively the relative frequencies of 
the client and impostor classes, and P(s/C) and P(s/I) are the 
conditional probability densities. We estimate the conditional 
probability densities by assuming Gaussian distributed 
scores, and using the empirical means () and standard de-
viations () of both the client and impostor distributions 
computed on the training database. Assuming independency 
between the two scores s1 and s2, and following [13], we 
compute the arithmetic mean of P(C/s1) and P(C/s2).  
 
2.3.3   Fusion by a Support Vector classifier 
In a few words, a SVM [11] looks for the optimal hyperplane 
in the sense of the minimum of the Total Error Rate (TER) in 
a high dimensional space. Nevertheless, in this work, we 
focus on a linear SVM simply to compare the AMR in which 
the weight given to each score is fixed, to a method in which 
such weights are learned by a statistical technique. There-
fore, the decision surface obtained is a straight line in our 
initial bidimensional scores space.  
The optimization of the SVM was carried out on a specific 
database dedicated to training. In order to generate a DET 
curve [12] during the test phase, the position of the optimal 
hyperplane is varied. This corresponds indeed to the varia-
tion of a decision threshold. 

3. EXPERIMENTAL SETUP  

3.1 BIOMET�s Signature and Voice data in brief 
BIOMET is a multimodal biometric database including face, 
fingerprint, on-line signature, hand shape and voice. We ex-
ploit signature and voice data from 77 people with time vari-
ability, captured in the two last BIOMET acquisition cam-
paigns, which have a five months spacing between them. 
More details on the BIOMET database can be found in [6]. 
Signature data was captured on a digitizer at a rate of 100 
samples per second. Each sample contains 5 features: the 
coordinates (x(t),y(t)) of each point sampled on the trajectory, 
the axial pen pressure p(t) in such a point, and the position of 
the pen in space (the standard azimuth and altitude angles in 
the literature). The total number of signatures available per 
person is 15 genuines and 12 forgeries, made by four differ-
ent impostors. 
Speech data was recorded in quiet environment. Sampling 
rate is 16 kHz and sample size is 16 bits. In each session, 
each speaker uttered twice the 10 digits in ascending and 
descending order before reading sentences. The amount of 
available speech for each speaker is about 90 seconds per 
session. 

 
3.2 Training Protocols per modality 
The Signature Verification expert is trained on 5 signatures 
randomly chosen among the 15 genuine signatures available.  



As for the Text-independent Speaker Verification expert, 
each client model is adapted using the 10 digits utterance 
(about 15s of speech). Test data is composed of a segment of 
speech of approximately 15s, taken from read utterances. For 
more details, the reader should refer to [9].  
 
3.3 Building the Bimodal database of real subjects 
To build the bimodal database, we associate the scores of the 
two experts (Signature and Voice). We consider for the voice 
expert two configurations: one without noise (�database1�), 
and another with 0dB noise (�database2�). The noise intro-
duced is Gaussian additive white noise, added to the raw 
speech signal. To obtain a Signal-to-Noise Ratio of 0dB, the 
power of the raw signal is computed excluding silences.  
Figure 1 below shows the effect of noise on client and impos-
tor scores� distributions.  
 

 

 
Fig. 1. Bimodal scores' distribution on scores without (up) 
and with noise (down).  
 
Clearly, the overlap between client and impostor scores is 
much more important in the noisy case, the classification task 
will therefore be more difficult.  
This bimodal database is then split into a Fusion Learning 
Base (FLB) and a Fusion Test Base (FTB) according to a 5-
fold Cross-Validation. In k-fold Cross-Validation, the data is 
divided into k subsets of approximately equal size. Then, (k-
1) subsets are used for training and the remaining one for 
test. This is repeated k times while changing the training and 
test subsets, in order that every subset has been devoted to 
test once. The Fusion Learning Base is devoted either to 
normalization in the case of fusion by AMR, and to training 
the Support Vector Classifier. In order to reduce the bias re-
lated to the small number of persons in the database, we con-
sider 10 different samplings of the 5 initial subsets, and com-
pute average error rates.  

For each person in FLB and FTB, we have at disposal 5 bi-
modal client accesses and in average 10 bimodal impostor 
accesses (this number varies across persons from 6 to 12 
impostor accesses). 

4. EXPERIMENTS  

 
Fig. 2. DET curves of AMR with �Min-Max�, �Tanh Estima-
tor� and Bayes normalizations and SVM fusion paradigms 
on clean (up) and noisy data (down).  
 
The AMR and SVM fusion paradigms were compared fol-
lowing the protocol given in section 3.3. The linear SVM 
receives as input the on-line signature score that belongs to 
the [0,1] interval, and a speech score that is not normalized, 
as shown in Figure 1. Indeed, the signature expert already 
gives as output a score in [0,1], but such normalization does 
not depend on the client and impostor distributions of all 
signature scores of the database, it is in fact a personalized 
normalization depending only on each client�s scores [8]. 
Figure 2 shows the DET curves [12] of the two fusion para-
digms in the simple configuration (clean data), and in the 
complex one (noisy data). We first notice that in the simple 
configuration (up), for values of the threshold close to the 
one corresponding to the Equal Error Rate, AMR with �Min-
Max� normalization gives the best results (1.88%), followed 
by �Tanh Estimator� (1.99%), while SVM and AMR with 
Bayes normalization give equivalent performance (2.16% 
and 2.22%). In the case of the SVM, an optimal decision 
surface is searched on a small training set; we observe in fact 
an overfitting. For more insight, we performed an experience 
with training and testing on the whole database1. The result 
is shown in Table 1; the SVM gives the best result at the To-
tal Error Rate point as expected, but two other methods 
(�Min-Max� and �Tanh Estimator�) reach the same perform-
ance at this point.  
 



 
 SVM Min-Max Tanh Bayes 

EER 1.96% 1.73% 2.08% 2.02% 
TER 1.41% 1.41% 1.41% 1.64% 

Table 1. Results on the whole clean database at the Equal 
Error Rate (EER) and Total Error Rate (TER) points.  
 
Figure 2 (down) shows results on database2: the SVM and 
AMR with Bayes normalization perform much better than 
AMR with �Min-Max� and �Tanh Estimator� normaliza-
tions, and for most values of the threshold. Indeed, Bayes 
normalization is directly based on the client and impostor 
distributions of each expert�s scores. It is not only a rescaling 
of each expert�s score as it is the case for the �Tanh Estima-
tor� and �Min-Max� normalizations. We also notice that the 
results obtained by AMR after Bayes normalization are 
equivalent to those given by the SVM. Both methods take 
into account the client and impostor distributions: for the 
AMR, it is the case on the distributions of each expert�s 
scores separately, while the SVM considers bimodal scores 
distributions. Nevertheless, in the present case, we have not 
seen any improvement in using the SVM instead of AMR 
after Bayes normalization of scores. This can be explained by 
the fact that we consider uncorrelated modalities. Future pro-
spective work on correlated modalities would be interesting; 
in this framework, one can indeed expect a significant im-
provement of results when using the SVM. On the other 
hand, our results also seem to assess the Gaussian assump-
tion for class conditional densities.  
 

5. CONCLUSIONS 

In this work, a compared analysis of two fusion paradigms, 
the AMR and a Support Vector classifier, is carried out. Two 
different experimental conditions are considered. The first 
one corresponds to a situation where it is quite easy to dis-
criminate genuine from impostor accesses. It results from 
the use of two modalities, namely clean speech and on-line 
signatures. The second is a difficult configuration, showing 
an important overlap of the genuine and impostor distribu-
tions, obtained by adding noise to the speech data. Experi-
ments involve three normalizations for fusion by the AMR, 
and no normalization for the SVM. Results show that in the 
non noisy case, the AMR with a normalization performing 
only a rescaling of each expert�s scores to a given interval as 
�Min-Max�, gives the best results. In the noisy case, the 
SVM gives equivalent results to those obtained with AMR 
after scores� normalization via a posteriori class probabili-
ties; such results are much better than those given by the 
AMR paradigm with �Min-Max� and �Tanh Estimator� 
normalizations, for most values of the threshold. We con-
clude that, in noisy conditions, only the methods that take 
into account the scores� distributions are the more efficient.  
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