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ABSTRACT
This paper deals with the recovery of clean images from a set
of their noisy convolutive mixtures. In practice, this prob-
lem can be seen as the one of simultaneously separating and
restoring source images that have been first degraded by un-
known filters, then summed up and added with noise. We
approach this problem in the framework of Blind Source
Separation (BSS), where the unknown filters, in our case
FIR filters in the form of blur kernels, must be estimated
jointly with the sources. Assuming the statistical indepen-
dence of the source images, we adopt Bayesian estimation
for all the unknowns, and exploit information about local cor-
relation within the individual sources through the use of suit-
able Gibbs priors, accounting also for well-behaved edges in
the images. We derive an algorithm for recovering the blur
kernels that make the estimated sources fit the known proper-
ties of the original sources. The method is validated through
numerical experiments in a simplified setting, which is how-
ever related to real application scenarios.

1. INTRODUCTION

The problem of the joint blind separation and deconvolution
of multiple convolutive mixtures of multiple signals/images
is known as Multiple Input/Multiple Output (MIMO) blind
deconvolution, or multichannel blind deconvolution, and can
be formulated in the context of Blind Source Separation
(BSS) and Independent Component Analysis (ICA) [1] [5].
The analysis via BSS and ICA of MIMO systems has been
first attached in the frequency-domain, since all techniques
for instantaneous BSS can be applied independently in each
frequency bin [13]. Unfortunately, the permutation inde-
terminacy, which is inherent in BSS, may make wrong the
reconstructions. In the time-based model, various methods
have been proposed as well, based on second- and higher-
order statistics, neural networks, ensamble learning, and con-
trast functions [10] [14] [6]. Most of this research has
been limited to one dimensional signals, with application in
speech and audio processing (e.g. the cocktail party prob-
lem), in multiaccess digital communication systems and ar-
ray processing, and in biomedical signal processing.

More recently, it has been highlighted that also important
image processing and computer vision problems can be for-
mulated as instantaneous or convolutive BSS problems [4].
One interesting application is, for instance, the analysis of

degraded documents. Indeed, most ancient documents are
affected by the overlapping of two or more text patterns, due
to seeping or transparency of ink from the reverse side page,
which make difficult the legibility by both human and au-
tomatic readers. In this case, multiple digital images of the
document itself, acquired with different modalities (e.g. mul-
tispectral scans) can be modeled as convolutive mixtures of
the individual text patterns. BSS techniques can thus be ap-
plied to recover legible recto and verso text patterns from
documents showing bleed-through or show-through, and un-
derwritings in palimpsests.

In this paper, we propose a general approach to deal with
convolutive mixtures of images, when the unknown filtering
operators are FIR filters, in the form of blur kernels, and the
mixtures are affected by noise, while consider the document
analysis application as our case study for the simulations.
We adopt a Bayesian estimation formulation, which offers
a flexible way to approach the integrated solution of two or
more problems, and to account for prior knowledge which
can be available. Thus, Bayesian estimation permits to for-
mulate the convolutive BSS problem as the joint estimation
of the mixing kernels and the sources. Furthermore, auto-
correlation constraints of the individual sources can be nat-
urally enforced through Markov Random Field (MRF) mod-
els, in the form of Gibbs priors. These constraints have been
proved to be effective for achieving stable solutions in many
inverse problems, and especially in those dealing with im-
ages, where they correspond to natural features of real physi-
cal maps and scenes. MRF models allow for retaining the in-
dependence assumption of ICA, and the one we adopt herein
has the property of being edge-preserving and of enforcing
regularity constraints on the edges themselves. This is an
important issue since edges, corresponding to intensity dis-
continuities due to object boundaries and textures, constitute
essential features to be correctly preserved in an image, for
analysis and understanding purposes.

We propose an estimation strategy for recovering those
kernels that, besides satisfying possible a priori information,
make the estimated sources fit the known properties of the
original sources. Thus, we reformulate the problem as the
estimation of the mixing operator alone, based on the source
and mixing priors, while the sources are kept clamped to their
Maximum A Posteriori (MAP) estimate, for any status of the
mixing. From the theoretical scheme, reasonable approxima-
tions are derived which allow for reducing the computational



complexity, and finding a remedy to other drawbacks, such
as the unavailability of analytical formulas for the sources
viewed as functions of the kernels, and non-convexity of the
priors. These will make the method computational efficient
and still effective. In particular, our method is implemented
through an iterative scheme where the Maximum Likelihood
(ML) estimation of the mixing alternates with the MAP es-
timation of the sources. This scheme ensures stability of the
solutions and employs GNC-like gradient ascent algorithms
to update the sources and simulated annealing (SA) to esti-
mate the blur coefficients.

2. PROBLEM FORMULATION AND ESTIMATION
ALGORITHM

The data generation model we consider in this paper is given
by:

xi(t) =
N

∑
j=1

(
Hi js′j

)
(t)+ni(t), t = 1,2, . . . ,T

i = 1,2, . . . ,N (1)

where xi(t), si(t) and ni(t) represents the i− th observation,
source, and noise or measurement error at location t, respec-
tively. Of course, in imaging location t stands for the cou-
ple of pixel indices. Although not necessary, for simplic-
ity sake, the same number N of measurements and unknown
sources has been assumed. In eq. (1) and through all the
paper, vectors si = (si(1),si(2), ...,si(T )), i = 1,2, ...,N, rep-
resent the lexicographically ordered notation of the various
sources, s(t) is the column vector of all the unknown sources
at location t, and s = (s(1), ...,s(T )) is the matrix whose t-
th column contains the N sources at location t, and whose
i-th row is the source si. These definitions extend to data
and noise as well. Quantity Hi js′j is the degraded version
of source s j which contributes to xi, where the blur matrix
Hi j, assumed unknown, is the block Toeplitz matrix that per-
forms convolution between a source image and a blur mask
as a matrix-vector product. In the following, the set of all
blur matrices will be indicated by H.

The problem of estimating kernels Hi j and the deblurred
source samples s could be stated as the following joint MAP
estimation problem:

(ŝ,Ĥ) = argmax
s,H

P(s,H, |x) = argmax
s,H

P(x|s,H)P(s)P(H)

(2)
where, from the independence assumption, P(s) is given by:

P(s(t)) =
N

∏
i=1

Pi(si(t)) ∀t. (3)

Joint MAP estimation is usually approached by means of al-
ternating componentwise maximization with respect to the
two sets of variables in turn [11]. Here, we propose instead
the following estimation scheme [8]:

Ĥ = argmax
H

P(ŝ(H))P(H) (4)

ŝ(H) = argmax
s

P(x|s,H)P(s). (5)

The rationale for this particular estimation strategy is the
looking for the mixing kernels that, besides satisfying their

own known properties, make the estimated sources fit the a
priori knowledge we possess about the ideal sources. In this
way, the original joint MAP estimation is reformulated as the
ML estimation of the mixing alone, based on the source and
mixing priors, while the sources are kept clamped to their
MAP estimate, for any status of the mixing. The dependence
of the mixing from the data is indirectly retained through the
sources. A similar strategy was successfully proposed for
BSS of images from noisy instantaneous mixtures [7]. In
that case, assuming that no prior information is available on
the mixing matrix A, our method becomes an extension to the
noisy case of the ML approach to noiseless ICA, where the
constraint ŝ(A) = A−1x is substituted by a MAP estimation
for s.

As per the prior P(s), in the form of eq. (3), we adopt
a local autocorrelation model for each source, in the form
of generic local smoothness MRF models, augmented to ac-
count for information about the regularity features of realistic
edge maps. Accounting for an edge process, and especially
a well-behaved one, is particularly useful for deconvolution,
when blur must be removed. In the Gibbs/MRF formalism
our priors are given by:

Pi(si) =
1
Zi

exp{−Ui(si)} (6)

where Zi is the normalizing constant and Ui(si) is the prior
energy in the form of a sum of potential functions, or stabi-
lizers, over the set of cliques of interacting locations. The
number of different cliques, as well as their shape, is re-
lated to the extent of correlation among the pixels, while the
functional form of the potentials determines the correlation
strength, and various features of the image edges. In our case
we express the regularity of edges by penalizing parallel, ad-
jacent edges, and chose Ui(si) as:

Ui(si) = ∑
t

∑
(r,z)∈Nt

ψi ((si(t)− si(r)) ,(si(r)− si(z))) (7)

where Nt is the set of the two couples of adjacent locations
(r,z), z < r, that, in the 2D grid of pixels, precede location
t in horizontal and in vertical. As stabilizers ψi, all having
same functional form but possible different hyperparameters,
in order to graduate the constraint strength in dependence of
the source considered, we chose the following functions [2]:

ψi(ξ1,ξ2) =









λiξ 2
1 if |ξ1|< θ

αi if |ξ1| ≥ θ
if |ξ2|< θ





λiξ 2
1 if |ξ1|< θ̄

αi + εi if |ξ1| ≥ θ̄
if |ξ2| ≥ θ .

(8)

In eq. (8), λi is a positive weight, the so-called regularization
parameter, the quantity θ =

√
αi/λi has the meaning of a

threshold on the intensity gradient above which a discontinu-
ity is expected, while θ̄ =

√
(αi + εi)/λi is a suprathreshold,

higher than the threshold, to lower the expectation of an edge
when a parallel, close edge is likely to be present. As already
mentioned, edge regularity constraints are especially useful
when, as in this case, deblurring must be achieved. Penal-
izing close parallel edges, in particular, contrasts the slopes



that blur creates in correspondence of jumps in the intensity
of the ideal image. Another useful constraint is edge continu-
ation, which means that the image edges, usually correspond-
ing to object boundaries, must form connected, closed lines.
This constraint helps in smoothing out the peaks of noise,
which would give rise to isolated edges. Our present model
is naturally suited to be augmented with the edge continua-
tion constraint, by simply adding to prior energy of eq. (7)
a new stabilizer which favors the creation of an edge when
a contiguous, aligned edge is likely to be present. This sta-
bilizer should have the same form of eq. (8), except that it
should refer to couples of aligned adjacent locations, and the
suprathreshold should be lower than the threshold.

Considering a white and Gaussian noise with zero mean,
the logarithm of the likelihood P(x|s,H) is given by:

log(P(x|s,H)) =−1
2 ∑

t
(Hs(t)−x(t))

′
Σ−1

t (Hs(t)−x(t))

(9)
where Σ is the covariance matrix of the noise, assumed, in
general, to be location-dependent, and Hs(t) indicates the
column vector of the degraded sources at location t. Problem
in eqs. (4)-(5), in view of data model of eq. (1), likelihood of
eq. (9) and priors of eqs. (6)-(8), can be reformulated as:

Ĥ = argmin
H

∑
i

Ui (ŝi(H))− logP(H) (10)

ŝ(H) = argmin
s

1
2 ∑

t
(Hs(t)−x(t))

′
Σ−1

t ×

×(Hs(t)−x(t))+∑
i

Ui (si) . (11)

The solution of problem in eqs. (10)-(11) presents some
computational difficulties. Indeed, in general it is not pos-
sible to derive analytical formulas for the sources viewed as
functions of H, and the priors are not convex. Thus, a sim-
ulated annealing (SA) algorithm has to be adopted for the
updating of H and the sources must be computed through
numerical estimation. If a correct SA schedule was used and
for each proposal of a new status for H the corresponding
sources were estimated, this scheme would ensure conver-
gence to the global optimum. Nevertheless, its computational
complexity would be prohibitive. However, some reasonable
approximations can be adopted to reduce the complexity of
the original problem, while keeping the effectiveness of the
approach. First of all, due to the usual small number of co-
efficients for the blur kernels, SA is not particularly cum-
bersome in this case. On the other hand, based on the fea-
sible assumption that small changes in H do not affect too
much the sources, these can be updated only after significant
modifications, e.g. at the end of a complete visitation of all
the filter coefficients. Furthermore, though the posterior is
non-convex as well, the image models we adopted allow for
performing the MAP source estimation through efficient de-
terministic non-convex optimization algorithms, such as the
Graduated Non-Convexity (GNC) algorithm [3]. A GNC-
like algorithm for the specific stabilizer in eq. (8) was de-
rived in [2], in the case of image denoising. In [9], the same
algorithm has been extended to account for images degraded
by a linear operator. In this form, the algorithm is suitable
to be applied to our present separation problem, where the

linear operator is given by the combination of the blur op-
erators. The whole blind separation algorithm reduces thus
to an alternating scheme governed by an external simulated
annealing for the estimation of H, according to eq. (10), in-
terrupted at the end of each Metropolis cycle, to perform an
update of the sources s, according to eq. (11). In all the ex-
periments performed using this scheme, stabilization of the
solutions was always observed.

3. EXPERIMENTAL RESULTS: A DOCUMENT
ANALYSIS CASE

The performance of the Bayesian blind separation method
from noisy convolutive mixtures of images described in this
paper was tested on synthetic images that simulate the scans
of couples of recto and verso pages of documents exhibiting
the bleed-through or show-through effect. As already said,
these distortions are very frequent in ancient documents, due
to the kind of ink used, which seeps and smears through the
paper support, but can also be present in scans of modern
documents, when the paper is not completely opaque.

The problem of recovering clean recto and verso images
of such documents can be seen as a 2×2 case of the convo-
lutive BSS problem formulated in eq. (1), where x1 and x2
are the grayscale images obtained by scanning, respectively,
the recto and the horizontally flipped verso page of a doc-
ument, and s1 and s2 represent the clean main texts in the
front and back page, respectively. In general, kernels Hi j are
filters modeling the blur effect due to the digital acquisition
process, ink fading and other degradations. In particular, for
i 6= j, Hi j model also the often strong smearing and attenua-
tion of the ink seeping from the back to the front page, and
vice versa. This ink smearing is mainly due to the chemical
composition of the ink, and the characteristics of the trans-
mission medium (paper or parchment). Usually, these ker-
nels are not known, both in size and coefficients, so that we
should estimate them jointly with the sources. In this specific
application, however, some physical constraints on the mix-
ing process can be exploited, which allow us to simplify the
problem, i.e. to further reduce its dimension. For instance,
providing that the two pages have been written with the same
ink, same pressure and at two close moments, it is reasonable
to assume that the attenuation/smearing of the bleed-through
pattern in the two pages is the same, i.e. H12 = H21. For sim-
ilar considerations, it is also expected that H11 = H22. Fur-
thermore, the intensity of the front text pattern in the recto
page should be higher than that of the bleed-through pattern,
i.e. the sum of the coefficients of the blur mask associated
with H12 should be lower than that of the blur mask associ-
ated with H11, with the same relationship holding, reversed,
in the verso page.

Neglecting the blur effect, and considering only the atten-
uation coefficients, this problem reduces to an instantaneous
BSS problem, and we showed that the above symmetry fea-
tures can be indirectly exploited to efficiently solve the prob-
lem via symmetric whitening [12].

In the approach described here, the symmetry features of
the problem can be easily exploited in a direct manner. Thus,
the number of kernels to be estimated can be reduced to two,
and the conditions on the kernel elements can be enforced
as well as constraints in the SA estimation algorithm. These
constraints can be described through the prior P(H). With
respect to the kernel sizes, we assumed to can estimate them



off-line, for instance looking at the slope extent of the char-
acter boundaries in the two superimposed patterns.

A typical experiment among the ones we carried out is
shown in Figure 1. To obtain the recto and verso images
of Figures 1(a) and 1(b), the original, clean text of the front
(back) page was blurred with a 5×5 Gaussian-like blur mask
h1 whose element sum is 0.8, while the original, clean text of
the back (front) page was first horizontally flipped, and then
blurred with a still 5× 5 but more uniform mask h2, with
element sum equal to 0.3, in order to obtain stronger blur and
attenuation for the bleed-through patterns with respect to the
foreground text patterns. Both the recto and verso images
were then added with a space-invariant white Gaussian noise
(SNR=26 dB).

As prior for H, we considered the positivity of the blur
mask coefficients, and assumed to know that the sum of the
elements of h2 is lower than that of the elements of h1. These
constraints are easily enforced through SA. With respect to
the source priors, since the two ideal text patterns have simi-
lar characteristics, we assumed the same stabilizer of eq. (8)
for each of them, but adopted different parameters, to account
for the different scale of the characters and the different con-
trast between text and background. With parameters λ = 0.8,
α = 250 and ε = 250 for the front text image, and λ = 0.5,
α = 160 and ε = 160 for the back text image, we obtained
the results shown in Figures 1(c) and 1(d). The good per-
formance of our method in this synthetic but realistic case is
apparent, both for separation and deconvolution purposes. In
particular, we can appreciate the good reconstruction of the
fine scale characters in the front text image of Figure 1(c).
Experiments on real documents are planned for the near fu-
ture.
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