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ABSTRACT
The application of adaptive systems trained in a supervised
manner to approximate the Neyman-Pearson detector is con-
sidered. The general expression of the function approxi-
mated when using the LMSE criterion is calculated. To eval-
uate the sensitivity of the decision rule based on this function
to threshold variations, a novel strategy is proposed based
on the calculus of the partial derivative of the probabilities
of detection and false alarm with respect to detection thresh-
old. Results allow us to explain the dependence of the deci-
sion rule performance on design parameters such as the prior
probabilities, the desired outputs and the signal to noise ratio
selected for training (TSNR). In previous works based on a
trial and error strategy, TSNR has appeared as a critical pa-
rameter, but until now, no effort had been made to explain it.
As an example, the detection of gaussian signals in gaussian
interference is considered.

1. INTRODUCTION

In this paper the application of adaptive systems trained in a
supervised manner to approximate the Neyman-Pearson de-
tector is considered. This detector maximizes the probability
of detection (PD), while maintaining the probability of false
alarm (PFA) lower than or equal to a given value. The charac-
teristics of such a detector are reflected in its ROC (Receiver
Operating Characteristic) curve, that relates PD to PFA [1].

Although Ruck et al. [2], and Wan [3], demonstrated
that a neural network can be used to approximate the opti-
mum bayessian classifier when trained using the least mean
squared-error (LMSE) criterion, and extended this result to
any adaptive system trained using this error criterion, they
did not consider the problem of approximating the Neyman-
Pearson detector.

In previous works, neural networks were proposed as a
solution for detecting radar echoes in different environments
[4, 5, 6]. Results highlighted a strong dependence of the
neural network-based detector performance on the signal to
noise ratio selected for training (TSNR). They also observed
that the detection capabilities and the influence of the TSNR
depended on the desired PFA. Recently, some attempts to re-
duce the dependence of the neural detector performance on
TSNR have been carried out [7], based on the use of a com-
plex pre-processing stage that reduces this dependence at the
expense of a high computational cost. Nevertheless, no effort
has been made to explain the reasons of such a dependence.
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In relation to the capability of an adaptive system trained
using the LMSE criterion to approximate the Neyman-
Pearson detector, a novel method is proposed in this paper,
based on the calculus of the expression approximated by the
system during training. On the other hand, we use the func-
tion approximated by the system to study the sensitivity of
the detection rule based on it to approximation errors. This
novel approach not only allows us to explain the influence
of TSNR on detector performance, but also the influence of
other design parameters, such us the prior probabilities and
the desired outputs.

2. THE APPROXIMATED DISCRIMINANT
FUNCTION AND THE DECISION RULE

D. W. Ruck et al. [2] demonstrated that a multilayer percep-
tron (MLP) converges to a mean squared-error approxima-
tion of the Bayes optimal discriminant function, when trained
using the LMSE criterion. They study two-class and mul-
ticlass problems. For binary detection and desired outputs
{−1,1} (1 for input vectors from class H1 and −1 for input
vectors from class H0), they proved that the neural network
output approximates the Bayes optimal discriminant function
g0(z) = P(H1|z)−P(H0|z), where z ∈ Rn is the feature vec-
tor, and P(H1|z) and P(H0|z) are the posterior probabilities
of the classes.

In a more general problem, if the network is trained to
produce tH1 when the feature vector is from class H1 and tH0
when the feature vector is from class H0, the mean squared-
error between the network output, F(z), and the desired out-
puts is given by Em = limN→∞(Es/N), where:

Es =
[

∑
z∈Z1

(F(z)− tH1)
2 + ∑

z∈Z0

(F(z)− tH0)
2] (1)

Es/N is the sample mean squared-error calculated for
a set of N pre-classified feature vectors; Z1 ⊂ Z ⊆ Rn and
Z0 ⊂ Z ⊆ Rn are the regions where H1 and H0 are chosen,
respectively (Z0 ∪ Z1 = Z, Z0 ∩ Z1 = ∅, Z being the input
space). If the training set represents a reasonable approxi-
mation to the input space, Em will be minimized when the
network is trained to minimize Es.

Using the Strong Law of Large Numbers, Em can be ex-
pressed as:

Em = P(H1)
∫

Z
(F(z)− tH1)

2 f (z|H1)dz

+P(H0)
∫

Z
(F(z)− tH0)

2 f (z|H0)dz (2)



The function F(z) that minimizes Em, which will be de-
noted as F0(z), is given in (3). It is obtained by simple deriva-
tion of Em with respect to F(z).

F0(z) =
P(H1) f (z|H1)tH1 +P(H0) f (z|H0)tH0

P(H1) f (z|H1)+P(H0) f (z|H0)
(3)

Taking into consideration that f (z) = P(H1) f (z|H1) +
P(H0) f (z|H0), the following expression fulfills:

F0(z) f (z) = P(H1) f (z|H1)tH1 +P(H0) f (z|H0)tH0 (4)

and expression (2) can be expressed as:

Em =
∫

Z
(F(z)−F0(z))2 f (z)dz

+
∫

Z
(P(H1) f (z|H1)t2

H1
+P(H0) f (z|H0)t2

H0
−F2

0 (z))dz (5)

Since the second integral is independent of F(z), mini-
mizing Em is equivalent to minimize (6). So the network out-
put is an approximation of F0(z) in the mean squared-error
sense, for any pair of desired outputs.

∫
Z
(F(z)−F0(z))2 f (z)dz (6)

For tH1 = 1 and tH0 = −1, expression (3) is equal to that
obtained by Ruck et al. [2]. If a hard threshold detector is
placed at the output of the system, the decision rule based on
F0(z) is expressed in (7).

P(H1) f (z|H1)tH1 +P(H0) f (z|H0)tH0

P(H1) f (z|H1)+P(H0) f (z|H0)

H1
≷
H0

η0 (7)

The question that has not been answered yet is: does the
decision rule (7) implement the Neyman-Pearson detector,
when η0 is fixed attending to PFA conditions? By means of
simple transformations, expression (7) comes into (8), where
Λ(z) = f (z|H1)/ f (z|H0) is the likelihood ratio. Finally,
Λ(z) can be cleared up in (8), to obtain the equivalent ex-
pression (9), proving that the rule (7) is an implementation
of the Neyman-Pearson detector.

P(H1)Λ(z)tH1 +P(H0)tH0

P(H1)Λ(z)+P(H0)

H1
≷
H0

η0 (8)

Λ(z)
H1
≷
H0

ηcv =
P(H0)(η0 − tH0)
P(H1)(tH1 −η0)

(9)

Expression (9), where ηcv is the detection threshold for
the decision rule based on Λ(z), shows that η0 for a given
PFA is not only a function of the likelihood functions, but
also depends on the prior probabilities and on the desired
outputs. These parameters can be selected by the designer
when generating the training set, and when determining the
activation function of the output neuron, respectively.

3. SENSITIVITY OF THE DETECTOR

The performance of a system that approximates the Neyman-
Pearson detector must be evaluated from the difference be-
tween its ROC curve and the Neyman-Pearson detector one.
For a given PFA, the difference between the probabilities of
detection must be as lower as possible.

In practical situations, the detection threshold is adjusted
to achieve the desired PFA, so PFA requirements can be ful-
filled. But, due to approximation errors, the associated PD
will be lower than the optimum detector one for the same
PFA. As we know the discriminant function approximated
by the system, we can calculate the difference between the
thresholds required by both, the system and the decision rule
based on the corresponding F0(z), and use it as a measure of
the approximation error.

The quantity of interest is not the approximation error,
but how the detector performance is affected by it. Taking
into consideration the previous reasoning, the objective is to
evaluate how the differences between the detection thresh-
olds required by the trained system and the decision rule
based on the corresponding F0(z), affect the global perfor-
mance of the detector based on the adaptive system. As this
performance is evaluated in terms of PFA and PD, a method
based on the calculus of the partial derivatives of both prob-
abilities with respect to the detection threshold is proposed.

3.1 Proposed method
If Pi is used for denoting PFA or PD, the partial derivative of
Pi with respect to η0 can be calculated using the chain rule
(10).

∂ Pi

∂η0
=

∂Pi

∂ηcv

∂ηcv

∂η0
(10)

The second factor of the right side of (10) can be calcu-
lated from (9) to obtain (11). It depends on the prior prob-
abilities of the classes and the desired outputs selected for
training, factors that can be controlled by the designer.

∂ηcv

∂η0
= − P(H0)(tH0 − tH1)

P(H1)(tH1 −η0)2 (11)

tH1 is greater than tH0 , and η0 ∈ [tH0 , tH1 ]. Because of that,
the partial derivative of ηcv with respect to η0 is always posi-
tive. Also, for η0 values close to tH1 , that is, for very low PFA
values, ∂ηCV /∂η0 is very high. We can try to compensate
it in some degree, by increasing the difference between the
desired outputs, or using training sets where feature vectors
from hypothesis H1 are more likely than those from hypoth-
esis H0.

The first factor of the right side of (10) depends on the
likelihood functions of the problem to be solved. Its value is
calculated in (12) (Hi = H1 for PD, and Hi = H0 for PFA)

∂Pi

∂ηcv
=

∂
∂ηcv

[
1−

∫ ηcv

−∞
f (Λ(z)|Hi)d(Λ(z))

]

= − f (Λ(z)|Hi)|Λ(z|Hi)=ηcv (12)

To gain an insight into ∂Pi/∂ηcv, we transform the rule
(9) into an equivalent one, based on a simpler statistic, �(z),
and the corresponding detection threshold, ηs. The relation
between ηs and ηcv is determined by the relation that exists



between the likelihood ratio and the selected statistic. Ex-
pression (10) can be re-written as:

∂Pi

∂η0
=

∂Pi

∂ηs

∂ηs

∂ηcv

∂ηcv

∂η0
(13)

Expression (13) shows that ∂Pi/∂η0 can be expressed as
the product of three factors:
• ∂Pi/∂ηs and ∂ηs/∂ηcv depend on the problem to be

solved.
• ∂ηcv/∂η0, not only depends on the a prior probabilities

of the classes and the desired outputs selected from train-
ing, because the value of η0 depends on the problem to
be solved.
The usefulness of adding a new factor in (10) only can be

proved if a particular case is considered. Next section deals
with the problem of detecting gaussian signals in gaussian
interference.

4. EXAMPLE: THE NEYMAN-PEARSON
DETECTOR FOR GAUSSIAN SIGNALS IN

GAUSSIAN INTERFERENCE

Lets assume that the feature vector is composed of n inde-
pendent gaussian samples of zero mean and unity variance
under hypothesis H0, and zero mean and a variance σ2

s + 1
under hypothesis H1. The signal-to-noise ratio is defined as
SNR = 10log10(snr) = 10log10(σ2

s ) and the value selected
for generating the training set is denoted as tsnr.

For a given tsnr, the likelihood functions are expressed in
(14) and (15); the decision rule based on the likelihood ratio
is given by (16).

f (z/H0) =
1√

(2π)n
exp

(
− 1

2
zT z

)
(14)

f (z/H1) =
1√

(2π)n(tsnr +1)n
exp

[
− 1

2(tsnr +1)
zT z

]

(15)

Λ(z) =
1

(tsnr +1)
n
2

exp
[ tsnr

2(tsnr +1)
zT z

] H1
≷
H0

ηcv (16)

A simpler sufficient statistic can be obtained applying
logarithms and re-arranging terms:

�(z) = zT z
H1
≷
H0

2
tsnr +1

tsnr
ln[ηcv(tsnr +1)

n
2 ] = ηs (17)

As the variance of the samples generated under hypoth-
esis H0 is fixed to unity, the probability density function of
�(z|H0) does not depend on tsnr, and for a given PFA, ηs is
independent of it. Because of that, the performance of the
Neyman-Pearson detector is independent of tsnr.

The partial derivative of ηs with respect to ηcv is given in
(18).

∂ηs

∂ηcv
=

2(1+ tsnr)
ηcvtsnr

(18)

Taking into consideration that �(z|H0) is a chi-square
random variable with n degrees of freedom and �(z|H1) is
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Figure 1: ∂PFA/∂η0 for n = 16, P(H1) = P(H0) = 0.5, tH1 = 1,
tH0 = 0, different T SNR values and PFA ≤ 10−4

a gamma random variable 1 of parameters a = n/2 y b =
2(snr +1), the partial derivatives of PFA and PD with respect
to ηs are calculated in (19), where Γ() is the gamma function.

∂PFA

∂ηs
= − 1

2
n
2 Γ( n

2 )
η( n

2−1)
s exp(

−ηs

2
)

∂PD

∂ηs
= − 1

(2(snr +1))
n
2 Γ( n

2 )
η( n

2−1)
s exp(

−ηs

2(snr +1)
) (19)

Combining expressions (11), (18) and (19), the partial
derivatives of PFA and PD with respect to η0 can be calcu-
lated. Although the ROC curves do not depend on tsnr,
∂PFA/∂η0 and ∂PD/∂η0 depend on it. Because of that, the
sensitivity of the detector based on F0(z) to detection thresh-
old variations depends on tsnr.

For n = 16, P(H1) = P(H0) = 0.5, tH1 = 1, tH0 = 0 and
different tsnr values, ∂PFA/∂η0 versus PFA curves are repre-
sented in figures 1 and 2. In figure 1, PFA values lower than
10−4 are considered, because higher values of PFA have no
interest in practical situations. The variation of ∂PFA/∂η0 is
very complex, especially for very low PFA values, but, in gen-
eral, we can conclude that high values of T SNR are prefer-
able. A study for higher PFA values reveals that in this region
the sensibility is higher and increases dramatically with the
TSNR (note that only the curves for T SNR = 0,3 and 5dB
have been represented in order to show the variation with
PFA and T SNR).

The corresponding ∂PD/∂η0 versus PFA curves for
SNR = 3 and 9dB, and PFA ≤ 10−4, are represented in fig-
ures 3 and 4. Again, the influence of T SNR is very important.
Also, the SNR must be taken into consideration. Comparing
figures 3 and 4, we can conclude that the sensitivity of PD
to detection threshold variations reduces significantly when
SNR increases. For a given value of SNR, in general, high
T SNR values are recommended in order to reduce the sensi-
tivity.

∂PD/∂η0 curves for higher values of PFA are not included
because they present a variation similar to that observed for
the ∂PFA/∂η0, although the sensitivity is lower.

1The Gamma probability density function is given by: f (x|a,b) =
1

baΓ(a) xa−1 exp(− x
b )
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Figure 2: ∂PFA/∂η0 for n = 16, P(H1) = P(H0) = 0.5, tH1 = 1,
tH0 = 0, different T SNR values and 0.5 ≤ PFA ≤ 1
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Figure 3: ∂PD/∂η0 for n = 16, P(H1) = P(H0) = 0.5, tH1 = 1,
tH0 = 0, SNR = 3dB, different T SNR values and PFA ≤ 10−4
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Figure 4: ∂PD/∂η0 for n = 16, P(H1) = P(H0) = 0.5, tH1 = 1,
tH0 = 0, SNR = 9dB, different T SNR values and PFA ≤ 10−4

5. CONCLUSIONS

This paper deals with the application of neural networks to
approximate the Neyman-Pearson detector. A general ex-
pression of the discriminant function approximated by an
adaptive system trained using the LMSE criterion is calcu-
lated and analyzed, proving that the decision rule based on it
is an implementation of the Neyman-Pearson detector. This
general expression reveals the influence of the prior proba-
bilities and the desired outputs selected for training.

Also, a novel method is proposed to evaluate the sen-
sitivity of the Neyman-Pearson detection rule based on this
discriminant function, to detection threshold variations. The
calculus of the partial derivatives of PFA and PD with respect
to the detection threshold are proposed, as tools to analyze
the robustness of the detector and to identify the values of the
training parameters that can reduce the effect of approxima-
tion errors on the performance of the neural network based
detector. Among these parameters, in previous works, the
tsnr appeared as a critical one, but no effort was made to ex-
plain the dependence of the detector performance on it. The
proposed method has been applied to a case of study in order
to evaluate the influence of tsnr. Results demonstrate that, for
the case of study, tsnr infuence is a function of PFA, and, for
low values of PFA, high values of tsnr are more suitable.
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