
DYNAMIC VERSUS CONVENTIONAL LAYER SORTING FOR
NULLING-AND-CANCELLING BASED MIMO DETECTION∗

Dominik Seethaler†, Harold Artés‡, and Franz Hlawatsch†

†Institute of Communications and Radio-Frequency Engineering, Vienna University of Technology
Gusshausstrasse 25/389, A-1040 Vienna, Austria

Phone: +43 1 58801 38958, Fax: +43 1 58801 38999, E-mail: dominik.seethaler@tuwien.ac.at
‡Information Systems Laboratory, Stanford University

Packard 234, 350 Serra Mall, Stanford, CA 94305-9510, USA

ABSTRACT

We analyze the error performance and computational complexity
of the recently proposed dynamic nulling-and-cancelling (DNC)
method for efficient near-ML MIMO detection. DNC performs a
“dynamic” layer sorting (LS) that exploits the information provided
by the current received vector, in contrast to conventional LS that
is based merely on average reliability measures. Here, we derive
an expression for the symbol error probability of the first layer-
decoding step of DNC under some simplifying assumptions. This
analysis as well as experimental results show the general superiority
of dynamic LS and reveal the conditions under which this superi-
ority will be most significant. We furthermore study how the two
LS strategies impact the computational complexity of the (D)NC
method. Specifically, we show that for practical system sizes the
complexity of DNC is only about twice that of NC and only a frac-
tion of that of the sphere-decoding algorithm for ML detection.

1. INTRODUCTION

Dynamic nulling-and-cancelling (DNC) has recently been proposed
as an improved nulling-and-cancelling (NC) technique for MIMO
detection [1]. In contrast to conventional NC [2, 3], which uses layer
sorting (LS) according to the layerwise post-equalization signal-to-
noise ratios, DNC uses a “dynamic” LS that exploits the information
provided by the current received vector.

Here, we investigate and compare the performance of conven-
tional and dynamic LS both analytically and experimentally. In [1],
we demonstrated that for spatial multiplexing systems, DNC sig-
nificantly outperforms NC and can achieve near-ML performance.
Complementing these previous results, we now study the conditions
under which the performance gains of dynamic LS can be expected
to be significant or only small. We show that the performance gains
will be strongest when conventional LS fails to exploit all degrees of
freedom available for LS. On the other hand, we also show that dy-
namic LS will almost reduce to conventional LS when conventional
LS has a strong preference for a specific layer.

After describing the system model and briefly reviewing the prin-
ciple of NC in this section, we summarize conventional and dy-
namic LS in Section 2. In Section 3, we study the error perfor-
mance of conventional and dynamic LS. For two statistically inde-
pendent Gaussian layers, we derive an expression for the symbol
error probability of the first layer-decoding step of DNC and dis-
cuss its consequences. Simulation results show that these analytical
results extend to other, more general situations. In Section 4, we
assess and compare the computational complexity of DNC and NC
through estimates of complexity orders and simulation results.

1.1 System Model

We consider a linear MIMO model that describes several differ-
ent space-time transmission schemes, including spatial multiplex-
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ing systems such as V-BLAST [2] and systems using linear disper-
sion codes [4]. The transmitted data vector d

4
= (d1 · · · dM)T of size

M and the received vector r 4
= (r1 · · · rN)T of size N ≥ M are related

according to
r = Hd+w .

Here, H denotes the system matrix of size N × M and w
4
=

(w1 · · · wN)T is a noise vector. The data vector components dk
(k ∈ {1, . . . ,M} indexes the layer) are drawn from a complex sym-
bol alphabet A and assumed zero-mean and independent with unit
variance. The noise components wk are assumed independent and
circularly symmetric complex Gaussian with variance σ 2

w. The sys-
tem matrix H is supposed to be known at the receiver.

1.2 Review of Nulling-and-Cancelling

NC is a decision-feedback method that detects the layers one after
another [2, 3]. At the first decoding step, the transmitted data vec-
tor d is estimated as y = Gr, with the zero-forcing (ZF) equalizer
GZF = (HHH)−1HH or the minimum mean-square error (MMSE)
equalizer GMMSE =

(

HHH + σ2
wI
)−1

HH [5]. Then, the sym-
bol of a certain layer k1 ∈ {1, . . . ,M} is detected by quantizing
yk1= (Gr)k1 according to the symbol alphabet A , i.e.,

d̂k1 = Q{yk1}
4
= arg min

a∈A

|yk1−a|2. (1)

Next, the interference caused by d̂k1 is subtracted from r:

r(2) = r− (H)k1 d̂k1 ,

where (H)k1 denotes the k1th column of H. If d̂k1 = dk1 (correct
decision), we obtain the reduced system model

r(2) = H(2)d(2) +w . (2)

Here, H(2) is H without the k1th column and d(2) is d without
the k1th component. At the second decoding step, the remaining
layers are re-indexed as {1, . . . ,M} \ {k1} → {1, . . . ,M−1}, and
a layer k2 ∈ {1, . . . ,M−1} is detected using the reduced system
model (2). This gives d̂(2)

k2
= Q

{(

G(2)r(2)
)

k2

}

, where G(2) is the
ZF or MMSE equalizer for H(2). Subsequently, the interference
caused by d̂(2)

k2
is subtracted from r(2). This detection-subtraction

procedure is repeated until all M layers are detected.
This basic principle of NC holds also for DNC. However, DNC

uses—apart from the different LS technique—MMSE equalization
with a different (“unbiased”) quantization of the MMSE equalizer
outputs yMMSE,k. The standard quantization (1) is replaced by [1]

d̂k1 = arg min
a∈A

ψk1(a) , with ψk1(a)
4
=

∣

∣

∣

∣

yMMSE,k1

Wk1

−a
∣

∣

∣

∣

, (3)



where Wk1 is the k1th diagonal element of the matrix
(

I +

σ2
w(HHH)−1)−1. (Note that 0 < Wk1 ≤ 1.) This quantization is

equivalent to (1) for constant-modulus symbol alphabets but yields
slight performance improvements otherwise.

2. LAYER SORTING

The main difference between DNC and conventional MMSE-based
NC is the LS technique employed. The performance of NC schemes
depends crucially on the order of the layers k1, . . . ,kM . LS is based
on the general principle that more reliable layers should be detected
first [2]. This reduces error propagation effects and supports the
processing of unreliable layers by means of the additional degrees
of diversity that become available in the reduced system models.

We now summarize conventional and dynamic LS for the first
layer-decoding step, where we detect layer k1 in favor of a symbol
d̂k1 . The subsequent layer-decoding steps are analogous, however
with a reduced number of active layers.

The reliability criterion used by conventional LS within MMSE-
based NC is given by the layerwise MMSE post-equalization signal-
to-noise ratios (PSNRs) [2, 3], which can be expressed as (e.g. [6])

SNRk =
1

σ2
w
[(

HHH+σ2
wI
)−1]

k,k

− 1 .

The layers are sorted according to maximum PSNR, i.e.,

k1 = arg max
k∈{1,...,M}

SNRk . (4)

NC with this LS rule outperforms NC without LS but still is far in-
ferior to ML detection (see Section 3.2). It is important to note that
SNRk is just an average reliability measure that does not depend on
the received vector r.

The dynamic LS rule underlying the DNC scheme was derived in
[1] by means of a Gaussian approximation for the post-equalization
interference. It reads as

k1 = arg max
k∈{1,...,M}

{

SNRk min
a∈A (d̂k)

{

ψ2
k (a)−ψ2

k (d̂k)
}

}

, (5)

where A (d̂k)
4
= A \{d̂k} is the set of all symbols a 6= d̂k and d̂k

and ψk(·) have been defined in (3). Comparing (5) with (4), we
see that SNRk is augmented by the instantaneous reliability fac-
tor (IRF) mina∈A (d̂k)

{

ψ2
k (a)−ψ2

k (d̂k)
}

≥ 0. The term “instanta-
neous” refers to the fact that the IRF depends on the received vector
r via yMMSE,k in (3). Whereas SNRk merely measures the aver-
age reliability of equalization, the IRF measures the instantaneous
reliability of the subsequent detection (quantization) process.

3. ERROR PERFORMANCE

In this section, we study the error performance of the first layer-
decoding step of conventional and dynamic LS both analytically
and through simulation. The first layer-decoding step is important
because it has a decisive impact on the overall error performance of
NC schemes.

3.1 Error Probability of a Two-Layer BPSK System

For tractability, we assume the case of two layers and BPSK mod-
ulation, with the two components of yMMSE being statistically in-
dependent and Gaussian. (In Section 3.2, we will verify that the
results obtained are consistent with the performance observed when
these simplifying assumptions are not satisfied.) The system matrix
H is considered fixed.

For BPSK modulation, dynamic LS in (5) simplifies as

k1 = arg max
k∈{1,...,M}

{

SNRk d̂kzk
}

, with zk
4
=

Re{yMMSE,k}
Wk

,

where d̂k is the result of conventional MMSE detection, i.e., d̂k =
Q{yMMSE,k} = sgn

(

Re{yMMSE,k}
)

= sgn(zk). Hence,

k1 = arg max
k∈{1,...,M}

{

SNRk |zk|
}

.

We have
zk = dk +nk (6)

with some nk independent of dk. By the Gaussian approximation for
the post-equalization interference, nk is zero-mean Gaussian with
variance σ 2

nk
= 1/(2 SNRk). The error probability of MMSE detec-

tion for the kth layer is thus given by [7]

P[d̂k 6= dk] = Q
(
√

2 SNRk
)

, (7)

where Q(·) denotes the Q-function. This result is valid for both NC
and DNC. For conventional NC (i.e., LS according to maximum
PSNR SNRmax = maxk∈{1,...,M} SNRk), the error probability of the
first layer-decoding step follows as

Pconv[E ] = Q
(

√

2 SNRmax
)

.

For DNC, however, calculation of the error probability cannot be
based on (7) because of the dynamic LS employed. It is shown
in the Appendix that for two statistically independent active layers
using BPSK symbols and under the Gaussian assumption, the error
probability of the first layer-decoding step is given by

Pdyn[E ] = Q
(

√

2(SNR1 +SNR2)
)

. (8)

Thus, whereas the error probability of conventional LS is deter-
mined by the maximum of the two PSNRs, the error probability of
dynamic LS is determined by the sum of the two PSNRs. We can
draw the following conclusions.

• Since SNR1 + SNR2 ≥ max{SNR1,SNR2} and Q(·) is a de-
creasing function, the error probability of dynamic LS is upper
bounded by the error probability of conventional LS, i.e.,

Pdyn[E ] ≤ Pconv[E ] .

• When one of the two PSNRs is very dominant, i.e., in the ex-
treme case SNR1/SNR2→∞ or SNR2/SNR1→∞, the two error
probabilities become equal, i.e., Pdyn[E ]→Pconv[E ]. In fact, dy-
namic LS here chooses the layer with maximum PSNR and thus
reduces to conventional LS.

• The performance gain of dynamic LS is most significant for
equal PSNRs, i.e., SNR1 = SNR2. In this case, we obtain
Pconv[E ] = Q

(√
2 SNR1

)

and Pdyn[E ] = Q
(√

4 SNR1
)

. In fact,
whereas conventional LS here fails (i.e., reduces to the case of
no LS), dynamic LS is still able to sort the layers based on the
information provided by the IRF.

We can conclude that the overall performance improvement due
to dynamic LS strongly depends on the structure of the PSNRs asso-
ciated with the realizations of H. In Section 3.2, this will be verified
experimentally for larger MIMO systems and a larger alphabet.

In [8], it has been shown that for an increasing size of the sys-
tem matrix, all MMSE PSNRs associated with an iid system matrix
converge to the same deterministic value. In the case of a spatial
multiplexing system (where the system matrix equals the channel
matrix), we can thus expect that the performance gain of DNC over
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Figure 1: Simulation results demonstrating the error performance
of the first layer-decoding step of DNC and conventional NC for a
spatial multiplexing system with M = N = 8 and a 4-QAM symbol
alphabet. (a) SER versus PSNR ratio ρ (see text) of the channel
realization, (b) estimated pdf of ρ .

NC is stronger for a larger number of transmit and receive anten-
nas (this has been verified experimentally in [1]). A strong average
performance gain can also be expected if for each realization of
the system matrix H the PSNRs are grouped into subsets of equal
PSNRs. Examples are the equivalent real-valued representation of
spatial multiplexing systems using QAM signaling (verified exper-
imentally in [1]) and systems using linear dispersion codes [4] (see
Section 3.2).

3.2 Simulation Results

We will now assess the symbol error rate (SER) performance
of DNC (dynamic LS) and conventional NC (conventional LS)
through simulations. Note that we no longer use the simplifying
assumptions made in Section 3.1. The MIMO channel was mod-
eled iid Gaussian.

SPATIAL MULTIPLEXING SYSTEM. For a spatial multiplexing sys-
tem, H is the MIMO channel matrix and M and N are the numbers
of transmit and receive antennas, respectively. Fig. 1(a) shows the
simulated SER of the first layer-decoding step for a spatial multi-
plexing system of size M = N = 8 with 4-QAM symbol alphabet
and a channel SNR of 15dB. The SER is plotted versus the ratio
of the largest to second largest PSNR, which is denoted as ρ . The
performance gain of dynamic LS over conventional LS is seen to
be strongest when the two largest PSNRs are nearly equal, i.e., for
ρ ≈ 1; dynamic LS here achieves an SER reduction by a factor
of about 20. However, the performance gain becomes quite small
when one of the PSNRs is dominant (e.g., for ρ = 3 the SER is
reduced just by a factor of about 1.5). This is an experimental veri-
fication of the theoretical results of Section 3.1.

Evidently, the average SER performance of the first layer-
decoding step depends on the distribution of ρ . Fig. 1(b) shows an
estimated probability density function (pdf) of ρ . It can be seen that
for this system, small values of ρ are very likely. Thus we can ex-
pect that DNC achieves a significant reduction of the average SER
of the first layer-decoding step, which yields a significant reduction
of the overall SER. This has been verified experimentally in [1].
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Figure 2: SER-versus-SNR performance of DNC, conventional NC,
and optimum ML detection for a MIMO system using an LD code.

SYSTEM USING LINEAR DISPERSION CODE. Next, we consider a
MIMO system where all PSNRs associated with the system matrix
H are exactly equal. This is the case for the linear dispersion (LD)
code in [4, equation (31)]. We used 3 transmit antennas, 3 receive
antennas, and a 4-QAM symbol alphabet. The size of H was 18×
18. Fig. 2 shows the SER-versus-SNR performance (note that the
overall SER is shown, not just the SER of the first layer-decoding
step). We see that DNC substantially outperforms conventional NC
and comes quite close to ML performance.

4. COMPUTATIONAL COMPLEXITY

The computational complexity of MMSE-based NC and DNC is
dominated by the calculation of the equalizer matrices G

(l)
MMSE,

l = 1, . . . ,M (see Section 1.2). For NC, the LS just depends on
the system matrix H, and thus the equalizers G

(l)
MMSE are calcu-

lated only once for an entire block of vectors during which H is
approximately constant (hence, this contributes to the “preparation
complexity” Cprep). For DNC, due to the dynamic LS employed,
the reduced equalizers G

(l)
MMSE, l = 2, . . . ,M have to be calculated

anew for each received vector r (hence, this contributes to the “vec-
tor complexity” Cvector). Thus, when H is constant during several
transmissions, the complexity of calculating the equalizers is higher
for DNC than for NC.

Fortunately, for DNC Cvector can be significantly reduced by
means of a recursive algorithm for calculating the equalizer matri-
ces. While this algorithm was originally proposed for conventional
NC [9], it yields larger benefits for DNC since for NC only Cprep
is reduced. Using this recursive calculation for both NC and DNC,
and assuming N =M for simplicity, the preparation complexity (per
block) Cprep is of order O(M3) for both NC and DNC, and the vec-
tor complexity (per vector) Cvector is O(M2) for NC and O(M3) for
DNC. However, we shall show next that for practical system sizes,
Cvector for DNC is not much higher than for NC.

In Table 1, we present empirical complexity (kflop) estimates
for NC, DNC, and ML detection in the case of spatial multiplex-
ing systems with equal numbers of transmit and receive antennas
M = N ∈ {4,6,8} and a 4-QAM symbol alphabet1. These kflop es-
timates were measured using MATLAB V5.3. Even though they are
implementation-dependent, they may be more practically meaning-
ful than the O(·) complexity estimates presented above. We again
distinguish between the preparation complexity Cprep and the vector
complexity Cvector. The ML detector was implemented by means of
the sphere-decoding (SD) algorithm [10]. The complexity of SD
strongly depends on the SNR and the specific channel realization.
Therefore, in addition to SD’s average Cvector, Table 1 shows SD’s
maximum Cvector observed during 10000 simulation runs at an SNR
of 10dB.

1For higher-order constellations, the complexity of NC and DNC is in-
creased only slightly.



System Preparation complexity Vector complexity
size ML(SD)

M =N ML(SD) DNC NC av. max. DNC NC

4 2.1 2.2 2.3 3.1 24.6 1.2 0.6
6 6.4 6.5 7.0 13.6 106.2 3.3 1.5
8 14.2 14.4 15.7 69.5 768 6.9 3.2

Table 1: Measured computational complexity (in kflops) of NC,
DNC, and ML (sphere decoding) detection for spatial multiplexing
systems with a 4-QAM symbol alphabet.

The following conclusions can be drawn from Table 1. For DNC,
Cvector is about twice as large as for NC. Cprep is smaller for DNC
than for NC, because with DNC a part of Cprep is transferred to
Cvector. DNC’s Cvector is just a fraction of both the average and
maximum Cvector of SD (even though DNC can achieve near-ML
performance). Note that in many applications Cvector will be the
dominant complexity component.

5. CONCLUSIONS

The error probability analysis for dynamic layer sorting (LS)
presented in this paper shows when and why dynamic nulling-
and-cancelling (DNC) is able to outperform conventional nulling-
and-cancelling (NC). The performance gain of dynamic LS is
largest when the layerwise post-equalization signal-to-noise ratios
(PSNRs) are all equal (in which case conventional LS fails), and
smallest when one of the PSNRs is very dominant (in which case
dynamic LS almost reduces to conventional LS). This behavior has
been verified experimentally. Furthermore, for a MIMO system
using a linear dispersion code, our simulation results showed that
DNC significantly outperforms conventional NC and that it is able
to come close to ML performance. This complements similar re-
sults for spatial multiplexing systems presented in [1].

Finally, an experimental complexity analysis demonstrated that
for practical system sizes the computational complexity of DNC is
only about twice that of NC and only a fraction of that of the sphere-
decoding algorithm for ML detection.

APPENDIX: DERIVATION OF Pdyn[E ] IN (8)

We derive the expression (8) for the error probability Pdyn[E ] of the
first layer-decoding step of DNC for the case of two active layers
using BPSK modulation. Because of symmetry, Pdyn[E ] is equal to
the conditional error probability given any specific choice of trans-
mitted symbols d1 and d2, e.g., d1 =d2 =1:

Pdyn[E ] = Pdyn[E |d1 =d2 =1] .

We recall from Section 3.1 that the layer-sorting and symbol-
detection rules are respectively given by

k1 = arg max
k∈{1,2}

{

SNRk |zk|
}

, d̂k1 = sgn(zk1) .

Therefore, an error at the first layer-decoding step occurs either if
DNC decodes in favor of layer 1 (|z1| > SNR2

SNR1
|z2|) and makes a

detection error (d̂1 6= 1 or equivalently z1 < 0), or if DNC decodes
in favor of layer 2 (|z2| > SNR1

SNR2
|z1|) and makes a detection error

(d̂2 6= 1 or equivalently z2 < 0). Since these two events are mutually
exclusive, we obtain

Pdyn[E ] = P
[

−z1 >
SNR2

SNR1
|z2|, z1 < 0

∣

∣

∣

∣

d1 =d2 =1
]

+ P
[

−z2 >
SNR1

SNR2
|z1| , z2 < 0

∣

∣

∣

∣

d1 =d2 =1
]

.

It can be shown that this can be equivalently written as

Pdyn[E ] = P
[

z1 < −SNR2

SNR1
z2

∣

∣

∣

∣

d1 =d2 =1
]

.

Assuming that z1 and z2 (cf. (6)) are statistically independent and
Gaussian, we obtain further

Pdyn[E ] =
1

2π σn1σn2

∫ ∞

−∞

∫ − SNR2
SNR1

z2

−∞
exp
(

− 1
2

( z1−1
σn1

)2
)

× exp
(

− 1
2

( z2−1
σn2

)2
)

dz1 dz2

=
1√

2π σn2

∫ ∞

−∞
Q

( SNR2
SNR1

z2 +1

σn1

)

× exp
(

− 1
2

( z2−1
σn2

)2
)

dz2

=
1√
2π

∫ ∞

−∞
Q

(
√

SNR2

SNR1
x +

√

2
SNR1

(SNR1

+ SNR2)

)

e−x2/2 dx ,

where we used σnk = 1/
√

2 SNRk. Finally, by applying the identity
(e.g. [11])

1√
2π

∫ ∞

−∞
Q(λx+ µ)e−x2/2 dx = Q

(

µ√
1+λ 2

)

,

we obtain Pdyn[E ] = Q
(
√

2(SNR1 +SNR2)
)

, which is (8).
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