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ABSTRACT

In this paper, we consider the problem of multipath channel estima-
tion from data observed at the receiver matched filter output. An
approach based on the MPM algorithm is proposed in the literature
assuming white noise at the output of the matched filter. We present
an improvement to this method that takes into account the noise cor-
relation involved by the matched filtering. Results obtained under
both the white-noise and the correlated noise hypotheses are com-
pared, showing that the latter approach performs significantly better
in terms of false-alarm and paths detection probabilities, as well as
in terms of mean quadratic error on the estimation of amplitudes
and delays. Simulations examples are proposed.

1. INTRODUCTION

In many applications involving transmission and reception of a sig-
nal, the propagation medium between the transmitter and the re-
ceiver corresponds to a multipath channel whose impulse response
h � t � is

h � t ���
P

å
n � 1

an exp � jFn � d � t � tn �	� (1)

where P is the number of paths and an, Fn and tn are respectively
the attenuation, the phase and the time delay of path n. Estima-
tion of the attenuations and time delays is often required, either for
the first strongest paths as in communications where the transmit-
ted digital information is searched for, or for all the paths, even the
weakest ones, as in oceanic acoustic tomography (OAT) where es-
timation of all the paths is important to optimally recover physical
parameters of the ocean.

We assume in this paper that the transmitted signal is known by
the receiver, which happens with learning sequences in communi-
cations or with the whole signal for medium identification oriented
applications such as active OAT. Maximum likelihood approaches
[4] or MUSIC-like subspace techniques [9, 5] have been proposed
for estimating the channel parameters. Unfortunately, they require
prior estimation of the number of paths P that can be provided by
methods such as AIC [1] or MDL criteria [11]. On another hand,
iteratively substracting channel paths [3] may lead to errors in the
presence of very close channel paths. To overcome such prob-
lems, penalized methods have been proposed [13]. In fact, it can be
checked that the penalty term can be interpreted as some bayesian
prior upon paths amplitudes.

An alternative bayesian channel estimation technique is consi-
dered in this paper, based on a Monte Carlo Markov Chain method,
namely the MPM (Maximization of the a Posteriori Marginals) al-
gorithm. This algorithm, first introduced in image processing to
solve segmentation problems [2], has also been used in the seismic
domain [8], and more recently in tomography [10] under a white
noise assumption at the receiver matched filter output. In order to
achieve improved channel estimation, we derive here a version of
the MPM algorithm where the noise correlation is taken into ac-
count. For the sake of simplicity and without loss of generality, we
only consider here noise correlation induced by matched filtering.

This work was supported by the SHOM (Brest, France).

This paper is organised as follows: Section 2 describes the
transmitted and received signals. The MPM algorithm in the pres-
ence of correlated noise is derived in Section 3, and simulations
results are given in Section 4 with comparison with the Cramer-Rao
Lower Bounds (CRLB) for time-delay estimation and amplitude es-
timation. A conclusion is given in Section 5.

2. TRANSMITTED AND RECEIVED SIGNALS

Throughout this article, we consider transmitted signals that can be
written in the form

e � t ��� s � t � cos � 2p fct �	�
where s � t � is the signal of interest and fc is the frequency of the
carrier.

From (1), the received signal r � t � can be expressed as

r � t �
�
P

å
n � 1

ans � t � tn � cos � 2p fc � t � tn ��� Fn �� n0 � t �	�

where n0 � t � denotes an additive white gaussian noise with variance
s2. r � t � is demodulated by means of two orthogonal carriers, and
a matched filter with impulse response s ��� t � is then applied. The
resulting signal can finally be written as

x � t ��� l � t ��� h � t �� n � t �	� (2)

where l � t � represents the autocorrelation of s � t � , and n � t � is a com-
plex circular gaussian noise. Due to the matched filtering, the auto-
correlation function of n � t � is Gn � t �
� s2l � t � . After sampling, we
obtain the equivalent matrix equation:

� ��� l � ����� (3)

where � l is the convolution matrix associated with l � t � .
3. DECONVOLUTION VIA THE MPM ALGORITHM

The deconvolution problem consists in recovering the impulse res-
ponse � from the received signal � . Solving this problem via
the standard least square methods wouldn’t take into account the
sparseness of � , that is, that there are few non-zero entries in � , but
would rather provide a time continuous impulse response.

3.1 A priori model

To account for the channel sparseness, we introduce an a priori
model for � . An underlying state vector ����� qk � k � 1 � L (L is the
number of samples) of independent Bernoulli random variables qk
taking value 0 or 1 corresponding respectively to the absence or
the presence of a path is introduced. The entries hk of � are then
modeled by a mixture of two gaussians:

hk � m � ��� 0 � s2
1 �� j ��� 0 � s2

1 �! �"� 1 � m � � �#� 0 � s2
0 �� j �$� 0 � s2

0 �  �



where s1 ��� s0. In this equation, m � P � qk � 1 � represents the
probability that a path is present at sample k. Therefore the proba-
bility density function of hk conditionally to qk is

p � hk
�
qk � i � � �$� 0 � s2

i �� j �$� 0 � s2
i �	� i � 0 � 1 �

We denote by � � � � � � � the so-completed unknown data.
Using Bayes formula and the fact that samples qk are indepen-

dent and samples hk are independent conditionally to qk [12], it can
be shown that the posterior log-likelihood of � is given by

L ��� � � � � � � � � Sl � � H � n � � � Sl � � � �
H �	� �
2s2

1

� �
H � 1 � �	� � �

2s2
0

� � H � ln



m

1 � m
s0

s1 � � (4)

where the constant terms have been omitted, ��� represents the di-
agonal matrix whose k-th entry is qk and � n ���� 1

n is the inverse
of the autocorrelation matrix of � .

3.2 The MPM algorithm

Estimating directly � and � from the log-likelihood (4) is a diffi-
cult problem since its complexity increases exponentially with L.
It is therefore necessary to implement simulation methods, such
as the MPM algorithm. This algorithm aims at simulating the pdf
of � conditional to � . Since this probability is not computable di-
rectly, the algorithm uses a Gibbs sampler to simulate realisations of
samples zk following the a posteriori marginals p � zk

� � ��� � k � , where� � k � � z0 ������� � zk � 1 � zk � 1 ������� � zL � .
The Gibbs sampler is implemented in the following way:

1. Initialization: � � ��� 0 � and � � � � 0 � .
2. For i � I and for k randomly covering � 1 ������� � L � ,� drawing of a uniform random variable v ����� 0 � 1  � Detection step: q � i �k �"! � v � 1  � dk �� Estimation step:

h � i �k � ��� m
q # i $k
� V

q # i $k
�� j �$� m

q # i $k
� V

q # i $k
� ,

where ! A � t � is the index function of A ( ! A � t ��� 1 if t % A and 0

otherwise) and dk � p � qk � 1
� � ��� � i �� k � is the a posteriori detection

probability (see Appendix A):

dk �'& 1 � 1 � m
m

V0s2
1

V1s2
0

exp


 �
m0
� 2

2V0
�
�
m1
� 2

2V1 �)( � 1 �
We can remark that the expression of the MPM algorithm for cor-
related noise little differs from the white noise case [12]: the noise
correlation only appears in the computation of conditional means
and variances m0, m1, V0 and V1. The simulated samples ���*� i � � i � I0 � I
(for i + I0, the samples are removed to account for the learning pe-
riod) are used to compute Monte Carlo estimators � e and � e of �
and � as:

qe
k � 1 if ,.- qk / � 1

I � I0
åI

i � I0 � 1 q � i �k � s �

he
k �1023 24

1,.- qk / I

å
i � I0 � 1

q � i �k h � i �k if qe
k � 1

0 otherwise �
Remark: In the simulations, s has been chosen equal to 0 � 5. Besides
performance little depend on the choice of (m � s 2

1 � s2
0 ) that can any-

way be estimated precisely via an SEM algorithm [12]).

4. RESULTS

For the simulations, s � t � was chosen to be a Pseudo Noise (PN) se-
quence of length N � 63 binary symbols with the following circu-
lar autocorrelation shape: it takes value 1 � � 1 � N � � t � 5 � NTb � when

t %�- � Tb � Tb / and value � 1
5
N otherwise [6], where Tb is the bi-

nary symbol duration such that Tb � 8Ts and Ts is the sampling rate.
In order to benefit from this circular autocorrelation property, the
sequence is transmitted several times (10 times here) and then ave-
raged after matched filtering. Figure 1 presents the results obtained
for a multipath channel with 20 paths and for an average SNR by
paths, defined as SNR � � Ps 2

n ��� 1 åk � 1 � P a2
k , equal to � 15 dB.
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Figure 1: Channel estimation via MPM algorithm: (a) output of
the matched filter, (b) real channel ( 6 ) and estimated channel with
white noise assumption ( 7 ), (c) real channel ( 6 ) and estimated
channel with correlated noise assumption ( 7 ).

Let us remark that for a given path, under the white noise as-
sumption several neighbouring estimated peaks may be found [12].
This phenomenon disappears under the correlated noise assump-
tion.

For performance computation, we consider three different
channels: a single path channel, a multipath channel and a channel
with two close paths. For each case, J simulations are run. Be-
sides the average SNR by path is considered for keeping coherence
among the results obtained for channels with different numbers of
paths.

4.1 Single path channel

For a single path channel, at simulation j (1 � j � J), the estimated
channel may contain more than one path. Therefore we must define
a criterion for detection of the true path. Let’s call K the number
of estimated paths, tk the k-th estimated path time delay and tr the
true path time delay. Then we consider that the true path is detected
when the estimated path whose time delay verifies

te � argmin
tk
� � tk � tr

� �
is closer to the real path than the duration Tb of one symbol:

�
te �

tr
� � Tb. Otherwise it is considered as a false alarm, as well as any

additional estimated path. From this definition, we can compute the
detection probability PD and the false alarm probability PFA

PD � 1
J

J

å
j � 1

N j
d � PFA � 1

J

J

å
j � 1

N j
f �



where N j
d � 1 if the single path has been detected at simulation j

and 0 otherwise, and N j
f � 1 if there was at least one false alarm

at simulation j and 0 otherwise. We can also compute the time
delay mean square error e2

t � , - � te � tr
� 2 / and the corresponding

amplitude mean square error e2
a ��,.- �ae � ar

� 2 / . Results obtained
under the white and correlated noise assumptions are presented in
Table 1. They show that the algorithm performs significantly better
for any of the four criteria considered when the noise correlation is
taken into account.

4.2 Multipath channel

A channel with 10 paths is simulated. In order to compare the
true channel with the estimated one, the matched filter output is
reconstructed for a noisefree signal and using both the true im-
pulse response � and the estimated impulse response ˆ� . Then
we compute the mean square error between both filter outputs:, - � � l � � � l ˆ� � 2 / . Results presented in Figure 2 show that the
case when the noise correlation is taken into account outperforms
the white noise case.
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Figure 2: Matched filter output MSE for a 10 paths channel under
white noise and correlated noise assumptions.

4.3 Channel with two close paths

We now consider a channel with two paths delayed by Tb
5
2. These

paths are generally not directly distinguishable at the output of the
matched filter. Let’s call again K the number of estimated paths, tk
the k-th estimated path time delay and tr� j the true j-th path time
delay ( j � 1, 2). Each true path j is now considered to be detected
when the estimated path whose time delay te � j verifies

te � j � argmin
tk

� �
tk � tr� j � �

is closer to the corresponding real path than a quarter of Tb:�
te � j � tr� j � � Tb

5
4. We define also a criterion for exact detection:

when
�
te � j � tr� j � + Ts, the j-th path is said to be perfectly detected.

Results are presented in Table 1. Again the algorithm is shown to
perform better when the noise correlation is taken into account, and
especially to be more precise for the time delay estimation.

4.4 Cramer-Rao Lower Bounds

The Cramer-Rao Lower Bound (CRLB) for the variance of the esti-
mate ĝ of a vector parameter g is given by the inverse of the Fisher
information matrix � with entry � i � j � expressed as

� i j � �),�� ¶ 2 log p � � � g �
¶gi¶g j � � (5)

where � is the data vector [7].
For amplitude estimation of a single path channel, the received

data can be written � � al ��� where a is the amplitude and l is
the autocorrelation of signal s � t � . From equation (5), it comes that

CRLB � a �
� 1
2l H �	� l

�

For time delay estimation of a single path channel, since l has a
triangular shape spreading over M ��
 2Tb

5
Ts � samples (we assume

it takes value zero outside that interval), it comes from equation (11)
(see Appendix B) that the CRLB for the time delay estimate is

CRLB � t ��� N2T 2
b

8 � N � 1 � 2 åL
p � 1

1
L dpp

sin4 � 2p p
2L

M
2 �

sin2 � 2p p
2L �

�

where the coefficients dpp are the eigenvalues of �	� when it is
diagonalized in the Fourier basis (see Appendix B).

Figure 3 shows that variances of the estimate of a and t are
significantly closer to CRLB(t) when the noise correlation is taken
into account.
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Figure 3: CRLB and estimate variances for: (a) time delay estima-
tion (b) amplitude estimation

5. CONCLUSION

In this paper we have proposed a multipath channel identification
technique based on the MPM algorithm. Previously used under the
assumption of white noise, we have extended it to take into account
the noise correlation at the matched filter output. Results obtained
show that performance are significantly improved when the noise
correlation is taken into account, especially for the time-delay esti-
mates, which explains the better results obtained for detection and
false alarm probabilities, and for the overall channel estimate.

A. APPENDIX A

We derive here the a posteriori detection probability dk � p � qk �
1
� � ��� � k � .

On one hand, the a posteriori pdf p � zk
� � ��� � k � q � can be written

as a gaussian mixture:

p � zk
� � ��� � k � � � dk

2pV1
exp



�
�
hk � m1

� 2
2V1 � � qk 6

� 1 � dk

2pV0
exp



�
�
hk � m0

� 2
2V0 � � 1 � qk � (6)

Therefore:

p � zk � � 0 � hk � � � ��� � k �
p � zk � � 1 � hk � � � ��� � k � �

1 � dk

dk

V1

V0
exp


 �
hk � m1

� 2
2V1

�
�
hk � m0

� 2
2V0 � �

(7)
On the other hand, applying the Bayes rule p � zk

� � ��� � k � �
p � � � � � p � hk

�
qk � p � qk � and according to the Bernoulli-gaussian



SNR � � 10 dB SNR � � 15 dB SNR � � 20 dB SNR � � 25 dB
white correl. white correl. white correl. white correl.

single path

PD 1 � 000 1 � 000 0 � 995 1 � 000 0 � 980 0 � 995 0 � 937 0 � 961
PFA 0 � 038 0 � 000 0 � 115 0 � 000 0 � 078 0 � 005 0 � 405 0 � 434
e2

t 1 � 6 � 10 � 8 0 � 000 1 � 8 � 10 � 8 2 � 2 � 10 � 10 2 � 1 � 10 � 8 1 � 1 � 10 � 9 3 � 6 � 10 � 8 8 � 8 � 10 � 9

e2
a 0 � 008 0 � 002 0 � 023 0 � 006 0 � 038 0 � 022 0 � 092 0 � 088

Close paths PD 0 � 911 1 � 000 0 � 890 1 � 000 0 � 890 0 � 995 0 � 720 0 � 835
PD � e 0 � 246 1 � 000 0 � 233 0 � 995 0 � 245 0 � 873 0 � 165 0 � 618

Table 1: Results

model presented in section 3.1, p � zk
� � ��� � k � can also be written:

p � zk
� � ��� � k � q � � & l

2ps2
1

exp

�
�
�
hk
� 2

2s2
1
����� ( qk 6

& 1 � l
2ps2

0

exp

�
�
�
hk
� 2

2s2
0

��� � ( 1 � qk

�
(8)

where � � � � � SL � � H � n � � � SL � � . Then:

p � zk � � 0 � hk � � � ��� � k �
p � zk � � 1 � hk � � � ��� � k � �

1 � m
m

s2
1

s2
0

exp

� �
hk
� 2

2s2
1

�
�
hk
� 2

2s2
0

� � (9)

Besides � can be written

� � M

å
n � 0

M

å
p � 0

�
Uk � n � snhk

���
an � k � p � k

�
Uk � p � sphk

� � f ��� � k �	�

where � n � � ai j � , sp representing the p-th entry among the M co-
efficients of the autocorrelation function of s � t � and

Uk � n � xn � k �
M

å
i � 0
i 	� n

sihn � k � i �
Then, comparing equations (6) and (8) provides

mi � 2Vi

M

å
n � 0

M

å
p � 0

s
�
pan � k � p � kUk � n �

Vi �
�

1

s2
i
� 2

M

å
n � 0

M

å
p � 0

s
�
nan � k � p � ksp � � 1

�

while comparing the constant terms in (7) and (9) gives:

dk � & 1 � 1 � m
m

V0s2
1

V1s2
0

exp


 �
m0
� 2

2V0
�
�
m1
� 2

2V1 � ( � 1 �
B. APPENDIX B

We derive the general CRLB for time delay estimation of a single
path channel. For a scalar parameter g , when the elements of � are
complex circular gaussian with mean m � g � and variance  � g � , the
Fisher information can be written [7]:

� � 2 � ¶ m � g �
¶g � H  � 1 � g � � ¶ m � g �

¶g � � tr & 
  � 1 � g � ¶  � g �
¶g � 2 ( �

(10)
Here ¶  � g � 5 ¶g � 0, and thus the second term in (10) vanishes.
Furthermore we assume that the path contribution to � spreads over
an interval denoted by - n0 � n0 � M � 1 / . Therefore (10) yields

� � 2
n0 � M � 1

å
k � n0

n0 � M � 1

å
l � n0

-  � 1 / kl
¶L � kTe � t0 �

¶t0

¶L � lTe � t0 �
¶t0

� 2
M � 1

å
k � 0

M � 1

å
l � 0

-  � 1 / k � n0 � l � n0



dL � t �

dt � t � kTe



dL � t �

dt � t � lTe

�

 is a toeplitz matrix and even a circulant matrix if we use a PN
sequence with periodic circular autocorrelation. Therefore, using
Whittle’s approximation for the Toeplitz case [14] and without any
approximation in the latter case, it comes that the EVD of  � 1 is � 1 ��
 � 
 H , where 
 is the Fourier transform matrix, that is
 � � wik ��� � e2 jp ik

L
5�

L � (L is the matrix size), and � � � dik � is
the eigenvalues diagonal matrix.

This leads to

� � L

å
p � 1

dpp �����
M � 1

å
k � 0

1
L



dL � t �

dt � t � kTe

e2 jp kp
L �����

2 � (11)
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