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ABSTRACT

We consider the problem of joint angle and doppler estimation for
Space-Time Adaptive Processing (STAP) airborne radar in non-
gaussian clutter which is modeled as a complex symmetric al-
pha stable SαS process. We introduce a sign covariance estimate
which has almost robust performance in heavy tailed noise [1].
The subspace estimate is calculated via the propagator method [2]
to reduce the computational load in the way that it does not re-
quire the eigendecomposition. Performance of the proposed tech-
nique is assessed through simulations and it is shown that the
method reveals better performance than FLOM-MUSIC [3] and
ROC-MUSIC[4].

1. INTRODUCTION

Airborne surveillance radars are faced with the difficult task of
detection, identification and parameter estimation of weak moving
targets in strong clutter and interferences environments. As a result
the problem of clutter and jamming suppression has been the focus
of considerable research in the radar engineering community. In
the early 1970s Brennan and Reed [5] proposed what is known as
Space-Time Adaptive Processing by exploiting the information in
the spatial and temporel domain for interference suppression and
target detection.

Most of the work in detection and estimation for radar appli-
cation assumes that the clutter has a gaussian distribution. This is
partly because of the desirable properties that the gaussian model
pocesses, which leads to tractable solutions. Spikes due to clutter
sources such as mountains, forest and sea waves (at low grazing
angles), and glints due to reflections from large flat surfaces such
as buildings and vehicles are usually present in radar returns. A
statistical model of impulsive interference has been proposed re-
cently as a good fit to radar returns [4, 6], which is based on the
theory of symmetric alpha-stable (SαS) processes. In this paper
we address the target parameter estimation problem through the
use of STAP radar array sensor in the presence of impulsive inter-
ference of an uncorrelated nature. We introduce a new subspace
algorithm for joint angle/doppler target estimation based on the
sign covariance matrix (SCM) [1]. The proposed algorithm out-
performs the classical Music algorithm and fractional lower order
statistics Music algorithms in resolution capability [3, 4] with a
low computational cost.

This paper is organized as follows. In section 2, we briefly re-
view some preliminaries on α-stable distributions. In section 3, we
formulate the STAP problem for airborne radar. In section 4, we
present the FLOM-matrix and our proposed subspace algorithm.
Finally, some simulation examples are presented in section 5, and
concluding remarks are given in section 6.
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Fig. 1. Symmetric α-stable PDFs with µ = 0,γ = 1, and different
characteristic exponents

2. SαS DISTRIBUTIONS

Gaussian distribution have long been accepted as a useful tool for
stochastic modelling. In this section, we introduce a statistical
model based on the class of symmetric α stable (SαS)distributions
which is well suited for describing signals that are impulsive in
nature [7]. A complex random variable (r.v.) X = X1 + jX2 is
isotropic SαS if X1 and X2 are jointly S αS and have a symmetric
distribution. This class of distribution is best defined by its char-
acteristic function

ϕ(ω) = exp{ jµω− γ |ω |α} (1)

where α is the characteristic exponent restricted to the values
(0 < α ≤ 2), µ (−∞ < µ < ∞) is the location parameter and γ
(γ > 0) is the dispersion of the distribution. The dispersion para-
meter γ determines the spread of the distribution around its loca-
tion parameter µ in the same way that the variance of a Gaussian
distribution determines the spread around the mean [7]. The char-
acteristic exponent determines the shape of the distribution see
Figure.1. The smaller α , the heavier the tails of the alpha sta-
ble density. This implies that random variables following alpha-
stable distributions with small characteristic exponents are highly
impulsive. We should also note that for α = 2 the distribution co-
incides with the Gaussian density. For α-stable processes only the
moments of order p < α exist. So estimation methods based on
second order statistics (SOS) of the data cannot be applied.



3. STAP PROBLEM FORMULATION

STAP is a two dimensional adaptive filtering algorithm that com-
bines signals from multiple array elements and pulses to suppress
interferences (clutter and jamming) and achieves both target detec-
tion and parameter estimation in airborne or space borne radar [8].
Consider a uniformly linear radar array consisting of N elements,
which transmits a coherent burst of M pulses at a constant pulse
repetition frequency (PRF) fr = 1/Tr over a set of range directions
of interest. The array receives signals generated by q narrowband
moving targets which are located at azimuth {θk; k = 1, ...,q} with
doppler frequencies { fk; k = 1, ...,q}. The array output can be ex-
pressed as [8]

x(t) = V(Θ,Ω)s(t)+n(t) (2)

where
• x(t) = [x1(t), ...,xMN ]T is the array output vector
• s(t) = [s1(t), ...,sq]T is the signal vector
• V(Θ,Ω) = [v(ϖ1,ν1), ...,v(ϖq,νq)] is the space-time steering

matrix.
v(ϖk,νk) = b(ϖ)⊗ a(νk) is the space-time steering vector
with

– a(νk) = [1 e j2πνk · · · e j2π(M−1)νk ]T is the temporel steer-
ing vector (νk = fk

fr
).

– b(ϖk) = [1 e j2πϖk · · · e j2π(N−1)ϖk ]T is the spatial steering
vector (ϖk = d

λ sin(θk), d is the element separation distance
and λ is the wavelength).

• n(t) = [n1(t), ...,nMN(t)]T

The interference vector n is supposed to be due to clutter and ther-
mal noise.

n = nc +nw (3)

The component nw is due to the thermal noise and it is spa-
tially and temporally white.

The Radar clutter returns for each range will be modelled as
a superposition of a large Nc clutter sources that are evenly dis-
tributed in a circular ring about the radar platform. The location
of the ith clutter patch is described by its azimuth θi and normal-
ized doppler frequency νi, the clutter component of the space-time
snapshot is given by

nc =
Nc

∑
i=1

γivi(ϖi,νi) (4)

where vi(ϖi,νi) and γi are the space-time steering vector and the
random amplitude of the ith clutter patch respectively. Assum-
ing the availability of K coherent processing intervals CPI’s at
t1, ..., tK , the data can be expressed as

X = V(Θ,Ω)S+N (5)

where X and N are the MN×K matrices

X = [x(t1), · · · ,x(tK)] (6)

N = [n(t1), · · · ,n(tK)] (7)

and S is the q×K matrix

S = [s(t1), · · · ,s(tK)] (8)

Our aim is to jointly estimate the directions of arrivals {θk; k =
1, ...,q} and the doppler frequencies {νk; k = 1, ...,q} of the source
targets using subspace techniques.

4. SUBSPACE TECHNIQUES IN SαS DISTRIBUTED
CLUTTER

We assume that the signals are complex circular gaussian random
variables that are statistically independent of each other. The noise
vector n(t) is assumed Sα S with characteristic exponent α .

The subspace techniques exploit the geometric properties
of the measurement signal and noise characteristics to esti-
mate the targets parameters. One of the most popular among
these is the MUSIC algorithm. The usual second order statis-
tics Music algorithm utilises the sample covariance matrix R̂ =
1
K ∑K

k=1 x(tk)x(tk)H . When the noise is impulsive, SOS can not be
applied. In this case preprocessing the data or introducing a new
covariance estimate can alleviate the problem.

4.1. FLOM-MUSIC
As the performance of the standard Music algorithm degrades in
the presence of impulsive noise due to the unboundness of the sam-
ple covariance matrix, new classes of matrices based on fractional
lower order statistics have been introduced in literature [3, 4].
Among these classes are the Robust covariation [4] and Fractional
lower order based (FLOM) matrices [3]. Tsung et al. [3] showed
that the two classes of matrices yield almost the same performance
when used with Music to estimate DOAs of circular signals. In the
following we consider FLOM-based matrices [3]. The (i, j)th en-
try of the FLOM-based matrix Ĉp [3] is defined by

Ĉpi j =
1
K

K

∑
k=1

xi(tk)|x j(tk)|p−2x j(tk)∗ (9)

where the fractional moment p must satisfy the inequality 1 < p <

α ≤ 2 so that the Ĉp is bounded. For Robust covariation matrices
Γ̂p the (i, j)th entry [4] is defined by

Γ̂pi j =
1
K ∑K

k=1 xi(tk)|x j(tk)|p−2x j(tk)∗
1
K ∑K

k=1 |x j(tk)|p
, 1 < p≤ 2 (10)

Denoting the eigenvectors of Ĉp by {ui}NM
i=1 then the 2D spectrum

Music based on Ĉp named 2D FLOM-Music can be expressed as

SFLOM−MUSIC(ϖ ,ν) =
1

vH(ϖ ,ν)UnUn
Hv(ϖ ,ν)

(11)

where Un = [uq+1, ...,uNM ] and v(ϖ ,ν) is the space-time search
steering vector.

4.2. SCM-MUSIC
We here propose the use of the sample sign covariance matrix
(SCM) shown to be a consistent estimate for ARMA process in
[9] and used recently for DOAs estimate in [1] which is shown
to be robust in heavy tailed noise and does not require any tuning
parameter in contrast to FLOM-Music which needs the parameter
(p) to be adjusted.

Σ̂ =
1
K

K

∑
k=1

ρ(x(tk))ρ(x(tk))H (12)

where ρ(.) is the sign function defined as

ρ(x) =
{ x

‖x‖
0

x 6= 0
x = 0 (13)

and ‖x‖= (xHx)1/2

The 2D SCM-Music spectrum can be obtained by applying the
eigendecomposition to the calculated SCM ([1], theorem 5).



4.3. SCM-Propagator
Performing the eigendecomposition of the SCM is a computation-
ally time consuming process O(NM)3, for this reason we propose
an extension of the propagator method [2, 10] proposed as a sub-
space approximate technique without eigendecomposition to angle
doppler target estimation. This method is summarized in the fol-
lowing steps
• Calculate the propagator operator P by partitioning the SCM

into two submatrices G (NM×L) of full rank ( a good choice
is to take L=number of sources) and H (NM× (NM−L))

Σ = [ G H ] (14)

P = GuH, (15)

where (.)u denotes the Moore-Penrose pseudo inverse
• The noise subspace estimate is given by

Ûn =
[

P
INM−L

]
(16)

where INM−L is the identity matrix of dimension (NM −
L,NM−L).

• Orthonormalisation of Ûn

The computational complexity for each step is described be-
low:

Operartion Computational cost
Calculation Of P O(NML2)+O((NM)2L)+O(L3)
Orthonormalisation O(NM(NM−L)2)

5. SIMULATION RESULTS

In all simulations, the radar array is linear with five elements
spaced by half wavelength N=5. The number of transmitted pulses
is M=10. The amplitude of the targets is modelled by complex
gaussian random variables. The FLOM parameter p=1.11. We
define the generalized signal to noise ratio (GSNR) [4]

GSNR = 10log(E{|s(t)|2}/γ (17)

for FLOM-Music and ROC-Music Figure 2 shows the isosur-
face of the 2D spectra of ROC-Music, FLOM-Music and the pro-
posed method in impulsive environment wit (α = 1.2)2. We note
that Music can not resolve the two closely moving targets.The
SCM-Propagator reveals better resolution capability compared to
FLOM-Music and ROC-Music [4].

In Figures 3 and 4, we evaluated the estimation accuracy of
ROC-Music, FLOM-Music and the proposed algorithm in function
of the number of snapshots and the GSNR(effect of the dispersion
parameter γ). In every experiment we perform 100 Monte-Carlo
runs to compute the mean square error (MSE) of the parameter

1It is shown in [3, 4] that using p close to 1 gives better performance
2For purpose of comparaison, values of α < 1 are not considered be-

cause of the unboundness of the FLOM-based covariance matrix and using
higher values close to 2 (gaussian case) the proposed method as well as
FLOM based covariance matrices estimators will converge to the conven-
tional sample covariance matrix estimator

estimates. As it is expected the performance of ROC-Music and
FLOM-Music [3] are approximately the same. The complete fail-
ure of Music is apparent in both figures. On the other hand, we ob-
serve that the number of snapshots does not affect the overall per-
formance of ROC-Music and FLOM-Music (the curves are flat). In
both figures the SCM-Propagator shows better performance than
FLOM-Music and ROC-Music.

6. CONCLUSION

In this paper, we have considered the problem of joint target angle
doppler estimation in SαS noise using subspaces techniques. We
proposed the use of a sample sign covariance matrix along with the
propagator method for joint angle/doppler estimation in symmet-
ric alpha-stable (SαS) additive noise. The proposed method shows
high resolution capability and lower estimation error compared to
FLOM-Music and ROC-MUSIC with a low computational load.
The proposed method can also be applied even for α < 1 and does
not require any parameter adjustment; in contrast to the methods
mentioned earlier applicable only for α≥ 1 and which require the
fractional moment p to be adjusted. To reduce further the com-
putational complexity, the SCM estimator can be combined with
other subspace tracking algorithms.
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Fig. 2. 2D Angle, doppler spectra for(a)Music (b) FLOM-Music (c) ROC-Music (d) SCM-Propagator (N=5,M=10,2 moving target at
azimuth angles [20◦,30◦,−20◦] with normalized dopplers 0.1, 0.2 and -0.2 additive noise (α=1.2), GSNR=10dB, p = 1.1
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Fig. 3. MSE of estimated (a)Angle (b) Doppler as function of the GSNR N=5, M=10, 2 moving target at azimuth angles [20◦,30◦] with
normalized dopplers 0.1, 0.2, additive noise (α=1.2), K = 50, p = 1.1
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Fig. 4. MSE of estimated (a)Angle (b) Doppler as function of number of snapshots K N=5, M=10, 2 moving target at azimuth angles
[20◦,30◦] with normalized dopplers 0.1, 0.2, additive noise (α=1.2), GSNR=2dB, p = 1.1
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