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ABSTRACT
We treat the problem of reconstructing a signal from its non-ideal
samples where the sampling and reconstruction spaces as well as the
class of input signals can be arbitrary subspaces of a Hilbert space.
If the signal is known to lie in an appropriately chosen subspace,
then we propose a method that achieves the minimal squared-error
approximation. In the general case, we show that the minimal-error
reconstruction cannot usually be obtained. Instead, we suggest min-
imizing the worst-case squared-error between the reconstructed sig-
nal, and the best possible (but usually unattainable) approximation
of the signal, over all signals that yield the given samples. Interest-
ingly, the optimal method turns out to be linear, and coincides with
a recently proposed suboptimal approach for this problem.

1. INTRODUCTION

Digital signal processing entails representing a signal by a set of
coefficients and relies on the existence of methods for reconstruct-
ing the signal from its samples. A recent approach to sampling
and reconstruction is to consider a generalized sampling scheme, in
which the samples are represented as the inner products of the input
signal x with a set of sampling vectors (associated with the acqui-
sition device), which span the sampling space S [1, 2, 3, 4, 5].
Reconstruction is obtained by taking linear combinations of a set of
reconstruction vectors that span the reconstruction space W . This
framework is quite general and includes the conventional Shannon-
Whittaker paradigm as a special case.

Since in this setting the reconstructed signal is constrained to
lie in W , if x is not in W to begin with, then perfect reconstruction
cannot be obtained, regardless of the sampling and reconstruction
method. Our problem then is to process the samples prior to recon-
struction such that the reconstructed signal x̂ is close to x in some
sense. In our setup, the only constraints we impose are that the sam-
pling is linear and bounded, and the reconstruction is constrained to
a subspace W of an arbitrary Hilbert space H . However, we do not
require any specific constrains on the spaces involved.

The framework we consider here was first introduced in the
context of shift-invariant spaces in [1], in which a consistent approx-
imation method was proposed. In this approach, the reconstructed
signal is designed to yield the same samples as the original signal
x. This strategy was later extended to a more general setting in
[3, 5, 6]. Under a direct-sum condition on the spaces, the consistent
reconstruction is given by x̂ = EW S ⊥x where EW S ⊥ is the oblique
projection onto W along the orthogonal compliment of S . Note,
however, that the fact that x and x̂ yield the same samples does not
necessarily imply that x̂ is close to x. In fact, for an input x not in
W , the norm of the resulting reconstruction error x̂−x can be made
arbitrarily large, if S is close to W ⊥.

To ensure that the reconstruction x̂ is close to x for all choices
of S and W , we may try to minimize the squared-norm of the re-
construction error x̂− x. If the reconstruction space W is contained
in the sampling space S , then by proper pre-processing of the sam-
ples the minimal squared-error approximation of x in the space W ,
given by the orthogonal projection PW x onto W , can be obtained.
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However, as we show in Section 3, if S does not contain W , then
the squared-error cannot be minimized over the entire space H of
input signals. In Section 4 we consider the case in which x is known
to lie in an appropriately chosen subspace, and show that the min-
imal squared-error reconstruction can be obtained over all x in the
subspace using a linear pre-processing method.

Recently, an alternative method was proposed [7], aimed at re-
ducing the error between the reconstructed signal x̂ and the best
approximation to x in W . For simplicity, it was suggested to con-
strain the reconstruction to be linear. Furthermore, the proposed
method aimed to minimize the worst-case squared difference be-
tween x and the best possible approximation PW x, for all choices
of x. This approach does not take the given samples into account,
but rather considers the worst-case error over all possible values
of the input signal x, although some choices of x are not compati-
ble with the samples. The resulting reconstruction is given by the
double orthogonal projection x̂ = PW PS x, where PS (PW ) is the
orthogonal projection onto S (W ). It was also shown in [7] that
this reconstruction can lead to a smaller squared-norm error than
the consistent reconstruction method.

Here, we develop a more general formulation of the problem
where we allow for nonlinear reconstruction methods, and we also
take the prior information of the given samples into account. Thus,
we seek the possibly nonlinear reconstruction that minimizes the
worst-case error, where now the worst-case is with respect to the
signal values x that are consistent with the given samples. Interest-
ingly, we show that the optimal solution is linear, and coincides with
the previous suboptimal approach to this problem: x̂ = PW PS x. Our
results provide a stronger optimality property of this choice of re-
construction leading to further justification for its use.

2. PROBLEM FORMULATION

2.1 Sampling Formulation
We denote vectors in an arbitrary Hilbert space H by lowercase
letters, and the elements of a sequence c ∈ `2 by c[n]. The op-
erator PA represents the orthogonal projection onto a closed sub-
space A of H , A ⊥ is the orthogonal complement of A , and
N (·) and R(·) are the null space and range space of the corre-
sponding transformation, respectively. The Moore-Penrose pseudo
inverse and the adjoint of a bounded transformation T are writ-
ten as T † and T ∗, respectively. The inner product between vectors
x,y ∈H is denoted by 〈x,y〉, and is linear in the second argument,
and ‖x‖2 = 〈x,x〉 is the squared norm of x. The direct sum between
two closed subspaces W and S is written as W ⊕S , and is the sum
set {w+ v; w ∈W ,v ∈S } with the property that W ∩S = {0}.
The oblique projection onto W along S ⊥ is denoted by EW S ⊥ ,
and is defined as the unique projection with R(EW S ⊥) = W and
N (EW S ⊥) = S ⊥. A set transformation V : `2 →H correspond-
ing to frame vectors {vn} ∈ H is defined by Va = ∑n a[n]vn for
all a ∈ `2. From the definition of the adjoint, if a = V ∗y, then
a[n] = 〈vn,y〉.

We consider a general sampling problem in a Hilbert space H ,
in which the goal is to reconstruct a signal x ∈H from a sequence
of samples {c[n]}. Our formulation of the problem allows for a
broad class of sampling strategies where the basic constraint we



impose on the sampling process is that it is linear. The samples are
modelled as the inner products of the signal x with a set of sampling
vectors {sn} that span a space S , so that c[n] = 〈sn,x〉. Denoting
by S the set transformation corresponding to the vectors {sn}, the
samples can be written as c = S∗x. The problem is to reconstruct x
from c, where the reconstruction x̂ of x has the form

x̂ = ∑
n

d[n]wn = Wd (1)

for some coefficients d = H(c) that are a (possibly nonlinear) trans-
formation of c. Here W is the set transformation corresponding to
a set of vectors {wn} that span the reconstruction space W . The
sampling and reconstruction scheme is illustrated in Fig. 1.

x - S∗ - H - W - x̂
c[n] d[n]

Figure 1: General sampling and reconstruction scheme.

A special case of Fig. 1 is when {sn = s(t−n)} and {wn = w(t−
n)} are vectors corresponding to uniform shifts of generators in L2.
In this setting, the sampling and reconstruction scheme of Fig. 1 can
be formulated in terms of linear-time invariant (LTI) filters.

If x is in W , and W and S ⊥ satisfy the direct-sum condition
H = W ⊕S ⊥, then it was shown in [3, 5, 6] that x can be perfectly
reconstructed from the samples c[n] by choosing H(c) = (S∗W )†c.
With this choice of H it follows from (4) below that x̂ = EW S ⊥x.
If x /∈ W , then the reconstruction x̂ = EW S ⊥x is no longer equal
to x, but has the property that it is a consistent reconstruction [1],
namely, it yields the same samples as x: S∗x = S∗x̂. However, the
fact that x and x̂ have the same samples, does not guarantee that x̂ is
close to x. In fact, using the relation x = EW S ⊥x+ES ⊥W x we can
express the reconstruction error as x̂−x = ES ⊥W x, which can have
arbitrarily large norm if S is close to W ⊥. Therefore, our problem
is to choose the transformation H in Fig. 1 such that x̂ is a good
approximation of x.

In [7] it was suggested to seek a linear reconstruction x̂ =WHc,
where H is chosen as the solution to the problem

min
H

max
‖x‖≤L

‖WHS∗x−PW x‖2. (2)

Here, L is an arbitrary constant that does not effect the solution. The
objective in (2) measures the difference between the reconstruction
with H when the true signal is x, and the best approximation to x in
W , over all bounded norm signals. Note, however, that it does not
take the given information c = S∗x into account.

In the following sections we propose different strategies for de-
signing H which attempt to control the squared-norm of the recon-
struction error x̂− x while directly considering the given samples
c = S∗x. In the first approach we take advantage of prior information
on x in the form of inclusion into a properly chosen subspace. Using
this knowledge will allow us to directly minimize the squared-error,
as we show in Section 4. The second strategy, considered in Sec-
tion 5, treats the squared-error criterion over the entire space, and
minimizes a worst-case error measure over the set of inputs x that
are compatible with the given samples. The solution turns out to be
linear, and coincides with the solution to (2).

2.2 Mathematical Preliminaries

To ensure that the sampling is stable we choose the vectors {sn}
and {wn} such that they form frames for their closed span, which
we denote by S and W respectively.

Definition 1 ([8]). A family of vectors {hn} in a Hilbert space H
is called a frame for a subspace A ⊆ H if there exist constants
0 < A≤ B < ∞ such that for all y ∈A ,

A‖y‖2 ≤∑
n
|〈y,hn〉|2 ≤ B‖y‖2. (3)

Note that any finite set of vectors that spans A is a frame for A .
If {sn} forms a frame for S , then c[n] = 〈sn,x〉 is in `2 for any

signal x that has bounded norm, and therefore the sampling process
is stable. Furthermore, S is bounded and R(S) = S . Similarly,
if the vectors {wn} form a frame, then R(W ) = W and the sum
∑n d[n]wn converges for any sequence d ∈ `2 [8].

A useful result on set transformations is given below.

Lemma 1 (Lemma 3.3 [9]). Let S : `2 →H and W : `2 →H be
bounded transformations on H with R(S) = S and R(W ) = W ,
where H = W ⊕S ⊥. Then
1. N (S∗W ) = N (W );
2. (S∗W )† is a bounded operator from `2 to `2;
3. (S∗W )†S∗W is the orthogonal projection onto N (W )⊥.

Using part 2 of the lemma, EW S ⊥ can be expressed as [6],[9]

EW S ⊥ = W (S∗W )† S∗ (4)

where S and W are bounded transformations with R(S) = S and
R(W ) = W . As a special case,

PW = W (W ∗W )† W ∗. (5)

3. MINIMAL SQUARED-ERROR RECONSTRUCTION

A straightforward strategy to designing a reconstruction that is close
to x is to minimize the squared-error ‖x̂− x‖2. In this approach, the
transformation H is the solution to the problem

min
H
‖x̂− x‖2 = min

H
‖WH(S∗x)− x‖2. (6)

For any choice of x,

‖WH(S∗x)− x‖2 = ‖WH(S∗x)−PW x‖2 +‖PW ⊥x‖2 ≥ ‖PW ⊥x‖2.
(7)

In the special case in which W ⊆S , the bound (7) can be achieved
by a fixed, linear transformation H defined by

H(c) = (W ∗W )†W ∗S(S∗S)†c. (8)

Indeed, with this choice of H(c),

x̂ = WH(S∗x) = W (W ∗W )†W ∗S(S∗S)†S∗x = PW PS x = PW x, (9)

where we used the representation (5) of PW and PS , and the last
equality follows from the fact that W ⊆S . However, as we now
show, when W is not contained in S , the lower bound cannot be
achieved for all x with a transformation H(c) that depends only on
the given samples c = S∗x and not directly on x.

Proposition 1. Let H : `2 → `2 be any solution to

min
H
‖x̂− x‖2 = min

H
‖WH(S∗x)− x‖2,

where W and S are bounded transformations with R(W ) = W ,
R(S) = S , and W *S . Then for arbitrary choices of x, H(S∗x)
cannot achieve the lower bound of (7).



Proof. To prove the proposition, suppose to the contrary that there
exits a solution H(c) that depends only on the available samples
c = S∗x. Consider the signal x defined by x = xS ⊥ + xW where
xS ⊥ is in S ⊥ but not in W ⊥ (such a vector always exists since
W *S ) and xW ∈W . For this choice, S∗x = S∗xW = c so that

WH(S∗x) = WH(S∗xW ). (10)

On the other hand, since H achieves the lower bound in (7),
WH(S∗x) = PW x and WH(S∗xW ) = PW xW = xW which implies
that PW xS ⊥ = 0, or xS ⊥ ∈W ⊥, contradicting our assumption.

To circumvent the problem associated with minimizing the
squared-error we develop two strategies which differ in their as-
sumptions on x. In the first approach x is assumed to lie in a sub-
space, which will allow us to directly minimize the squared-error. In
the second approach, we eliminate the dependency of the squared-
error on x by considering a worst-case error measure.

4. RECONSTRUCTION ON A SUBSPACE

We have seen in Proposition 1 that if W *S , then the lower bound
in (7) cannot be achieved for all x ∈H with a transformation that
depends only on the given samples. However, this does not preclude
the possibility that a fixed transformation achieves this bound when
restricting attention to a subset of input signals. Indeed, if we con-
sider only signals x ∈W , then we showed that under the direct-sum
condition H = W ⊕S ⊥, perfect reconstruction (which is therefore
the minimal-error reconstruction) is possible with H(c) = (S∗W )†c.
We now generalize this result to a broader class of input signals.

Suppose that x lies in a subspace A satisfying H = A ⊕S ⊥.
Theorem 1 below shows that in this case the minimal error recon-
struction can be achieved using a fixed linear transformation.

Theorem 1. Consider the problem

min
H
‖x̂− x‖2 = min

H
‖WH(S∗x)− x‖2 , x ∈A

where A ⊆H is an arbitrary subspace such that H = A ⊕S ⊥
and W,S are bounded set transformations with R(W ) = W ,R(S) =
S . A possible solution is H(c) = HA c where

HA = (W ∗W )† W ∗A(S∗A)† , (11)

and A is any bounded transformation with R(A) = A . The result-
ing reconstruction x̂ is the minimal-error solution x̂ = PW x.

Before proving the theorem, we note that from Lemma 1 (S∗A)†

is a well defined bounded operator. Furthermore, it is shown in [9]
that A(S∗A)† in (11) is independent of the choice of the bounded
transformation A : `2 →H , as long as R(A) = A .

Proof. We begin by noting that since x ∈A , it can be expressed as
x = Ay for some vector y ∈N (A)⊥. In addition, we know that

c = S∗x = S∗Ay. (12)

Multiplying both sides of (12) by (S∗A)† and using Lemma 1,

(S∗A)†c = (S∗A)†(S∗A)y = PN (A)⊥y = y. (13)

We conclude that the only vector in A with samples given by c
is the vector

x = Ay = A(S∗A)†c, (14)

so that given c we can reconstruct the vector x exactly. Once we
know x, the approximation in W minimizing the squared-error is

x̂ = PW x = PW A(S∗A)†c = WHA c, (15)

where we used the representation (5) of PW . Finally, since c = S∗x,

x̂ = PW A(S∗A)† S∗x = PW EA S ⊥x = PW x, (16)

where we used the fact that from (4), A(S∗A)† S∗ = EA S ⊥ , and
since x ∈A , EA S ⊥x = x.

A special case of Theorem 1 is when A = S , for which

HA = (W ∗W )†W ∗S(S∗S)†. (17)

In Theorem 2 below we will see that this solution is equivalent to the
minimax transformation. This implies that the minimax approach
minimizes the squared-error over all x ∈S .

As another example, suppose that H = W ⊕S ⊥, and let A =
W . With this choice,

HA = (W ∗W )†W ∗W (S∗W )† = PN (W )⊥(S∗W )† = (S∗W )†, (18)

where we used the fact that R
(
(S∗W )†) = N (S∗W )⊥ = N (W )⊥;

the last equality follows from Lemma 1. Thus, HA is equal to the
consistent reconstruction transformation, which agrees with the fact
that the consistent strategy minimizes the error over all x ∈W .

4.1 Geometric Interpretation
We now consider a geometric interpretation of our results. We first
note that sampling x with sampling vectors in S , is equivalent to
sampling the orthogonal projection of x onto S , denoted by xS =
PS x. This follows from the relation

〈sn,x〉= 〈PS sn,x〉= 〈sn,PS x〉. (19)

Since xS ∈S and the vectors {sn} span S , xS is uniquely deter-
mined by the samples c[n]. Therefore, knowing c[n] is equivalent to
knowing xS . The reconstruction problem then becomes that of re-
constructing a signal in A from its orthogonal projection xS onto a
subspace S of H . In Fig. 2 we illustrate the fact that there is only
one vector in A whose orthogonal projection onto S is xS . Thus,
given xS , we can immediately determine the original vector x, if
we know that x is in A . In our setup we are constrained to obtain
a reconstruction in W . But, since we can determine x from xS , we
can also determine its orthogonal projection onto W , which is the
minimal error reconstruction.

S
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S ⊥

´
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´
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´
´́

W

-
xS

x
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´
´

´
´

3́

Figure 2: Illustration of minimal-error reconstruction x̂ = PW x of
x ∈A from xS = PS x, with H = A ⊕S ⊥.

5. MINIMAX SQUARED-ERROR

The previous section treated the case in which x is restricted to a
subspace of H . We now consider the general formulation of the
sampling problem in which no such information on x is available.

To obtain a reconstruction that is close to the optimal approx-
imation PW x of x in W , we would like to minimize the error
‖x̂−PW x‖= ‖Wd−PW x‖. Since this error depends on x, which is



unknown, we seek to minimize the worst-case error over all norm-
bounded values of x that are consistent with our prior information
S∗x = c. This results in the problem

min
d

max
c=S∗x,‖x‖≤L

‖Wd−PW x‖2, (20)

where L is some constant; as we show, the solution does not depend
on the choice of L.

Theorem 2. Consider the problem

min
d

max
c=S∗x,‖x‖≤L

‖Wd−PW x‖2,

where W and S are bounded set transformations with R(W ) = W
and R(S) = S . A possible solution is

d = (W ∗W )†W ∗S (S∗S)† c.

The resulting reconstruction is x̂ = PW PS x.

Proof. First we note that any x satisfying S∗x = c and ‖x‖ ≤ L is of
the form x = S(S∗S)†c+ v for some v ∈ G where

G ,
{

v | v ∈S ⊥,‖v‖ ≤ L′
}

,

and L′2 = L2−
∥∥S(S∗S)†c

∥∥2. Thus,

max
c=S∗x,‖x‖≤L

‖Wd−PW x‖2 = max
v∈G

∥∥∥Wd−PW S(S∗S)†c−PW v
∥∥∥

2

= max
v∈G

‖ad −PW v‖2

= max
v∈G

{
‖ad‖2−2ℜ{〈ad ,PW v〉}+‖PW v‖2

}
, (21)

where we defined ad = W (d − (W ∗W )†W ∗S(S∗S)†c). Now, the
maximum in (21) is achieved when

ℜ{〈ad ,PW v〉}=−|〈ad ,PW v〉|. (22)

Indeed, let v ∈ G be the vector for which the maximum is achieved.
If 〈ad ,PW v〉= 0 than (22) is trivially true. Otherwise, we can define

v2 ,− 〈PW v,ad〉
|〈ad ,PW v〉|v. (23)

Clearly, ‖v‖ = ‖v2‖ and v2 ∈ G . In addition, ‖PW v‖ = ‖PW v2‖
and 〈ad ,PW v2〉=−|〈ad ,PW v〉| so that the objective in (21) at v2 is
larger than the objective at v unless (22) is satisfied.

Combining (22) and (21) our problem becomes

min
d

max
v∈G

{
‖ad‖2 +2|〈ad ,PW v〉|+‖PW v‖2

}
. (24)

Denoting the optimal objective value by A, and replacing the order
of minimization and maximization,

A ≥ max
v∈G

min
d

{
‖ad‖2 +2|〈ad ,PW v〉|+‖PW v‖2

}

= max
v∈G

‖PW v‖2, (25)

where we used the fact that ‖ad‖2 +2 |〈ad ,PW v〉| ≥ 0 with equality
for ad = 0, or

d = (W ∗W )†W ∗S(S∗S)†c. (26)

Thus, for any choice of d,

min
d

max
v∈G

‖ad −PW v‖2 ≥max
v∈G

‖PW v‖2. (27)

The proof then follows from the fact that d given by (26) achieves
the lower bound (27).

Theorem 2 establishes that the solution obtained in [7] is in fact
minimax optimal over all nonlinear transformations that are com-
patible with the samples c = S∗x.

Figure 3 illustrates the minimax reconstruction geometrically.
In Section 4.1 we showed that knowing the samples c is equivalent
to knowledge of PS x. The reconstruction problem then becomes
that of approximating an arbitrary signal in H from its orthogonal
projection xS = PS x, where the reconstruction is constrained to lie
in a subspace W of H . Fig. 3(a) depicts the orthogonal projec-
tion of x ∈ H onto S . The minimax reconstruction chooses the
orthogonal projection of xS onto W , as illustrated in Fig. 3(b).
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Figure 3: Illustration of minimax reconstruction of x from xS =
PS x (a) orthogonal projection of x onto S (b) minimax reconstruc-
tion x̂ = PW PS x.

In [7], the error resulting from the reconstruction x̂ = PW PS x is
analyzed and compared with the error of the consistent reconstruc-
tion method x̂ = EW S ⊥x when x can be an arbitrary signal in H .
It can be shown that if ‖PW ⊥x‖2 ≥ γ1 ‖PS ⊥x‖2 for a constant γ1, in
which case most of the energy of the signal is in the sampling space,
then the minimax approach will lead to a smaller error than the con-
sistent method. On the other hand, when ‖PW ⊥x‖2 ≤ γ2 ‖PS ⊥x‖2

for a constant γ2, so that most of the energy of the signal is in the re-
construction space, then the consistent reconstruction method leads
to a smaller squared-error.
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