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ABSTRACT

In this paper, a computationally efficient algorithm is pre-

sented for blind phase noise estimation and data detection

jointly, based on a sequential Monte Carlo method. The

basic idea is to treat the transmitted symbols as “ missing

data” and draw samples sequentially of them based on the

observed signal samples up to time t. This way, the Bayesian

estimates of the phase noise and the incoming data are ob-

tained through these samples, sequentially drawn, together

with their importance weights. The proposed receiver struc-

ture is seen to be ideally suited for high-speed parallel imple-

mentation using VLSI technology.

1. INTRODUCTION

Carrier phase synchronization is a critical issue in coherent

digital communication systems. A considerable amount of re-

search has been carried out for data detection in the presence

of the time-varying phase noise as well as the fixed phase off-

set [1]. Estimating the phase offset and detecting the data

jointly by maximum likelihood (ML) technique does not seem

to be analytically tractable. Even if the likelihood function

can be evaluated offline, however, it is invariably a nonlinear

function of the parameter to be estimated, which makes the

maximization step (which must be performed in real-time)

computationally infeasible. A number of suboptimal algo-

rithms have thus been proposed, most of which employ a

two-stage receiver structure with a phase noise estimation

stage followed by the data detection [2]. Phase synchroniza-

tion is typically implemented by a decision directed(or data

aided) or non-decision directed (or non-data aided). Decision

directed schemes depend on availability of reliably detected

symbol for obtaining the phase estimate, and therefore, they

usually require transmission of pilot or training data. How-

ever, in applications where bandwidth is the most precious

resource, training data can significantly reduce the overall

system capacity. Thus blind or non-data aided techniques

become an attractive alternative [3,4].

Unlike data-aided techniques, non-data-aided methods do

not require knowledge of the transmitted data, and instead,

they exploit statistics of digital transmitted signal. ML esti-

mation techniques can also be used in non-decision-directed

methods if the symbols transmitted are treated as random

variables with known statistics so that the likelihood function

can be averaged over the data sequence received. Unfortu-

nately, except for few simple cases, this averaging process is

mathematically impracticable and it can be obtained only by

some approximations which are valid only either at high or

low SNR values [5].

On the other hand, in order to provide an implementable

solution, recently there have been a substantial amount of

work on iterative formulation of the parameter estimation

problem based on the Expectation-Maximization (EM) tech-

nique [6]. It is known that the EM algorithm derives itera-

tively and converges to the true ML estimation of these un-

known parameters. The main drawbacks of this approach are

that the algorithm is sensitive to the initial starting values

chosen for the parameters, it does not necessarily converge to

the global extremum and the convergence can be slow. Fur-

thermore, in situation where the posterior distribution must

be constantly updated with arrival of the new data with miss-

ing parts, EM algorithm can be highly inefficient, because the

whole iteration process must be redone with additional data.

The sequential Monte Carlo(SMC) methodology [7] that has

emerged in the field of statistics and engineering has shown

great promise to solve such problems. This technique can

approximate the optimal solution directly without compro-

mising the system model. Additionally, the decision made at

time t does not depend on any decisions made previously, and

thus, no error is propagated in their implementation. More

importantly, the SMC yields a fully blind algorithm and al-

lows for both Gaussian and non-Gaussian ambient noise as

well as high-speed parallel implementations. Furthermore,

the tracking the time-varying phase noise and the data detec-

tion are naturally integrated. The algorithm is self-adaptive

and no training/pilot symbols or decision feedback are needed

[8].

The main objective of this paper is to investigate the use

of the SMC method to the problem of jointly detecting the

data and estimating the phase noise. The algorithm is based

on a Bayesian formulation. The basic idea is to treat the

transmitted symbols as “missing data” and to sequentially

draw samples of them based on the current observation and

computing appropriate importance sampling weights. The

technique does not require iterations and updating with new

data can be done cheaply.

2. SYSTEM DESCRIPTION

We consider a channel-coded communication system in the

presence of random phase noise and the additive Gaussian

noise. The input binary information bit dt are encoded using



some channel code, resulting in a code bit stream bt. The

code bits are passed to a symbol mapper, yielding complex

data symbols st, which take values from a finite alphabet set

A = {a1, a2, · · · , a|A|}, where |A| represents the cardinality of

the set A. Each data symbol is then transmitted through a

channel whose input-output relationship is given by

yt = ste
iθt + nt, t = 0, 1, · · · (1)

where yt, st, θt, are the received signal, the transmitted sym-

bols and the phase noise, respectively, and nt the additive

complex Gaussian noise with mean zero and the variance

σ2
n = E[|nt|2]. The phase noise process θt at tth sampling

instant is defined as a Wiener process determined as

θt = θt−1 + ut, t = 1, 2, · · · (2)

θ0 ∼ uniform(−π, +π)

where {ut} is a sequence of independent and identically dis-

tributed (i.i.d.) zero-mean random variables with variance

equal to σ2
u. Note that as Wiener phase noise is the accumu-

lation of white noise, its variance increase linearly with t. It

is assumed that ut and nt are independent. Our main objec-

tive is to solve the problem of online detection of the symbols

st and estimation of the phase noise θt, completely blindly,

based on the received signals up to time t, {yi}t
i=0. Defin-

ing the vectors, St = [s0, s1, · · · , st]
T , Y t = [y0, y1, · · · yt]

T ,

�t = [θ0, θ1, · · · , θt]
T , the the problem may be formulated

by making Bayesian inference with respect to the posterior

distribution

p(�t,St|Y t)∝ p(θ0)p(St)p(y0|θ0, s0)

t∏
j=1

p(θj |θj−1)p(yj |θj , sj)

∝ p(θ0)p(St) exp
(
− 1

σ2
|y0 − s0e

jθ0 |2
)

×
t∏

j=1

exp
(
− 1

σ2
u
(θj − θj−1)

2 − 1

σ2
|yj − sje

jθj |2
)

.

Although this joint distribution can be written out explic-

itly up to a normalizing constant, the computation of the

corresponding marginal joint distributions p(st, θt|Y t), nec-

essary for online joint symbol detection and phase noise es-

timation involve very high dimensional integration. There-

fore, the task is mathematically infeasible in practice. The

Gibbs samples [9] is a Monte Carlo method for overcoming

this difficulty. However it is not an adaptive procedure and

has difficulty dealing with sequentially observed data. With

new data coming the whole computation must be repeated

to incorporate new information. In the following section, we

present an adaptive blind algorithm for the joint symbol de-

tection and the phase noise estimation which is based on a

Bayesian formulation of the problem called Sequential Monte

Carlo(SMC) method first developed by [9].

3. SYSTEM MODEL

We first consider the case of uncoded system, where the sym-

bols are assumed to independent and identically distributed,

i.e.,

P (st = ai|St−1) = P (st = ai), ai ∈ A . (3)

For simplicity the symbols are chosen from a QPSK con-

stellation.When no prior information about the symbols is

available, the symbols are assumed to take each possible value

in A with equal probability, i.e., P (st = ai) = 1/|A|. Since

we are interested in jointly estimating the symbol st and the

phase noise θt, at time t based on the observation Y t, the

Bayes solution requires the posterior distribution

p(st, θt|Y t) =

∫
p(θt|Y t,St)p(St|Y t)dSt−1. (4)

Note that with a given St, the nonlinear (Kalman filter)

model (1), (2) can be converted into a linear model by lin-

earizing the observation equation (1) as follows [10]:

θt = θt−1 + ut (5)

yt = stHtθt + stQt + nt

where

Ht = ieiθ̂t|t−1 and Qt = (1− iθ̂t|t−1)e
iθ̂t|t−1 .

θ̂t|t−1 denotes the estimator of θt based on the observations

Y t−1 = (y0, y1 · · · , yt−1). Then the state-space model (5) be-

comes a linear Gaussian system. Hence,

p(θt|St,Y t) ∼ N(µθt(St), σ
2
θt

(St)), (6)

where the mean µθt(St) and the variance σ2
θt

(St) can be ob-

tained as follows. Denoting

µθt(St)
4
= θ̂t|t and σ2

θt
(St)

4
= Mt|t (7)

θ̂t|t and Mt|t can be calculated recursively by using the Ex-

tended Kalman Technique [10, page 449-452] with the given

St as:

θ̂t|t = θ̂t|t−1 + Kt(yt − ste
iθ̂t|t−1) (8)

Mt|t = (1−KtHtMt|t−1) (9)

where

Kt =
Mt|t−1H

∗
t

(Mt|t−1 + σ2
n)

,

θ̂t|t−1 = θ̂t−1|t−1,

Mt|t−1 = Mt−1|t−1 + σ2
u.

4. SMC TECHNIQUE FOR BLIND DETECTION

AND ESTIMATION

We can now make timely estimates of θt and detection of st

based on the currently available observation Y t, up to time t,

blindly, as follows. With the Bayes theorem, we realize that

the optimal solution to this problem is

θ̂t = E{θt|Y t} =

∫
θtp(θt|Y t)dθt (10)

=

∫

St

[∫

θt

θtp(θt|St,Y t)dθt

]

︸ ︷︷ ︸
µθt

(St)

p(St|Y t), dSt.



It then follows that

θ̂t = E{θt|Y t} =

∫

St

µθt(St)p(St|Y t)dSt . (11)

Similarly, the data can be detected by the hard decisions on

the symbol st by

ŝt = arg max
ai∈A

P (st = ai|Y t) (12)

where

P (st = ai|Y t) = E{1(st = ai)|Y t} . (13)

1{.} in (13) is an indicator function defined as

1(st = ai)

{
1 if st = ai

0 otherwise.

In most cases, an exact evaluations of the expectations (11)

and (13) are analytically intractable. SMC technique can

provide us an alternative way for the required computation.

Specifically, following the notation adopted in [11], if we can

draw m independent random samples {S(j)
t }m

j=1 from the dis-

tribution p(St|Y t), then we can approximate the quantities

of interest E{θ|Y t} and E{1(st = ai)|Y t} in (11) and (13),

respectively, by

E{θ|Y t} ∼= 1

m

m∑
j=1

µθt(S
(j)
t ) (14)

E{1(st = ai)|Y t} ∼= 1

m

m∑
j=1

1(s
(j)
t = ai) (15)

But, usually drawing samples from p(St|Y t) directly is usu-

ally difficult. Instead, sample generation from some trial

distribution may be easier. In this case, the idea of impor-

tance sampling can be used. Suppose a set of random sam-

ples {S(j)
t }m

j=1 is generated from a trial distribution q(St|Y t),

which

• is strictly positive, q(.|.) > 0, and

• has the domain as p(.|.).
By associating the weight

w
(j)
t =

p(S
(j)
t |Y t)

q(S
(j)
t |Y t)

(16)

to the samples, the quantities of interest, E{1(st = ai)|Y t}
and E{θt|St} can be approximated as follows.

E{θ|yt} ∼= 1

Wt

m∑
j=1

µt(S
(j)
t )w

(j)
t (17)

E{1(st = ai)|Y t} ∼= 1

Wt

m∑
j=1

1(s
(j)
t = ai)w

(j)
t , i = 1, 2, .., |A|

with Wt =
∑

w
(j)
t . The pair (S

(j)
t , w

(j)
t ), j = 1, 2, · · · , m is

called a properly weighted sample with respect to distribution

p(St|Y t). Note that the samples S
(j)
t can be drawn from the

distribution q(St|Y t) sequentially as follows. We can choose

q(.) to satisfy

q(St−1|Y t) = q(St−1|Y t−1).

Then, it can be easily shown that

q(St|Y t) = q(st|Y t,St−1)q(St−1|Y t−1),

and one can draw samples s
(j)
t from a trial distribution

q(st|Y t,S
(j)
t−1) and let S

(j)
t = (s

(j)
t ,S

(j)
t−1) for t = 0, 1, · · ·.

Specifically, it was shown in [11] that a suitable choice for the

trial distribution is of the form:

q(st|Y t,S
(j)
t−1) = p(st|Y t,S

(j)
t−1) . (18)

For this trial distribution, it is shown in [11] that the impor-

tance weight is updated according to

w
(j)
t = w

(j)
t−1p(yt|Y t−1,S

(j)
t−1), t = 0, 1, · · · (19)

The predictive distribution in (19) is given by

p(yt|Y t−1,S
(j)
t−1) =

∑
ai∈A

p(yt|Y t−1,S
(j)
t−1, st = ai)P (st = ai|Y t−1,S

(j)
t−1)

=
∑
ai∈A

p(yt|Y t−1,S
(j)
t−1, st = ai)P (st = ai) (20)

where (20) holds because st is independent of St−1 and Y t−1.

Furthermore, it can be shown from the state and observation

equations in (5),respectively, that

p(yt|Y t−1,S
(j)
t−1, st = ai) ∼ N(µ(j)

yt
(i), σ2(j)

yt
(i)) (21)

with mean and variance given by

µ(j)
yt

(i) = E{yt|Y t−1,S
(j)
t−1, st = ai}

= ai(Htµ
(j)
θt−1

+ Qt) (22)

σ2(j)
yt

(i) = Var{yt|Y t−1,S
(j)
t−1, st = ai}

= σ
2(j)
θt−1

+ σ2
n + σ2

p (23)

where the quantities µ
θ
(j)
t

and σ
θ
2(j)
t

in (22)and (23) can

be computed recursively for the Extended Kalman equations

given in (8-9). The trial distribution in (22) can be computed

as follows:

p(st = ai|Y t,S
(j)
t−1) = p(yt|Y t−1,S

(j)
t−1, st = ai)

×P (st = ai|Y t−1,S
(j)
t−1)

4
= ξ

(j)
t,i (24)

where it follows from (5) that

ξ
(j)
t,i =

1

πσ
2(j)
yt (i)

exp

(
−||yt − µ

(j)
yt (i)||2

σ
2(j)
yt (i)

)
P (st = ai). (25)

We now summarize the SMC blind data detection and

phase noise estimation algorithm as follows:

Step 1- Initialization:



• Initialize the extended Kalman filter: Choose the initial

mean and the variance of the estimated θt as the mean and

the variance of a uniform distribution defined on −π, +π)

as

µ
(j)
θ−1

= θ̂
(j)

−1|−1
= 0

σ
2(j)
θ−1

= M
(j)

−1|−1
= π2/12, j = 1, 2, · · · , m. (26)

• Initialize the importance weights: All importance weights

are initialized as w
(j)
−1 = 1, j = 1, 2, · · · , m. Since the data

symbols are are assumed to be independent, initial sym-

bols are not needed be generated.

Step 2- Compute ξ
(j)
t,i :

For each ai ∈ A compute the µ
(j)
yt (i), σ

2(j)
yt (i) and ξ

(j)
t,i from

(22),(23),(7) and (24), respectively.

Step 3- Draw samples sj
t , j = 1, 2, · · · , m

Draw s
(j)
t from the set A with probabilities

P (s
(j)
t = ai) ∝ ξ

(j)
t,i , ai ∈ A. (27)

Append s
(j)
t to S

(j)
t−1 to obtain S

(j)
t .

Step 4- Compute the importance weights:

w
(j)
t = w

(j)
t−1

∑
ai∈A

ξ
(j)
t,i .

Step 5-Detect the symbol st:

Detect the symbol st from (12) and (13)and (17).

Step 6-Update the a posteriori mean and variance of the

phase noise:

If the samples drawn up to time t is St in Step 3, set

µθt(S
(j)
t )

∆
= µ

(j)
θt

= θ̂
(j)

t|t

σ
2(j)
θt

(S
(j)
t )

∆
= σ

2(j)
θt

= M
(j)

t|t j = 1, 2, · · · , m.

and update according to the Kalman equations (8),(9).

Step 5- Do the restamping as described in Section 5.

5. RESAMPLING METHOD

A major problem in the practical implementation of the

SMC method described so far is that after a few iteration

most of the importance weights have negligible values that

is w
(j)
t ≈ 0. A relatively small weight implies that the sam-

ple is drawn far from the main body of the posterior distri-

bution and has a small contribution in the final estimation.

Such sample is said to be ineffective. The SMC algorithm

becomes ineffective if there are too many ineffective sam-

ples. The common solution to this problem is resampling.

Restampling is a an algorithmic step that stochastically elim-

inates those samples with small weights. Basically, the re-

sampling method takes the samples, to be generated sequen-

tially Ξt = {S(j)
t , µ

(j)
θt

, σ
2(j)
θt

}m
j=1 with corresponding weights

{w(j)
t }m

j=1 as an input and generates a new set of samples Ξ̃t =

{S̃(j)

t , µ̃
(j)
θt

, σ̃
2(j)
θt

}m
j=1 with equal weights, i.e {w(j)

t = 1/m}m
j=1,

assuming they are normalized to
∑m

j=1
w

(j)
t = 1. A simple

procedure to achieve this goal is, for each j = 1, 2, · · · , m, to

choose (S̃
(j)

t , µ̃
(j)
θt

, σ̃
2(j)
θt

) = (S
(j)
t , µ

(i)
θt

, σ
2(i)
θt

) with probability

w
(i)
t .

In this paper, a resampling technique suggested by [12]

is employed. This technique forms a new set of weighted

samples Ξ̃t = {S̃(j)

t , µ̃
(j)
θt

, σ̃
2(j)
θt

}m
j=1 according to the following

algorithm. (assume that
∑m

j=1
wj

t = m)

1. For j = 1, 2, · · · , m, retain `j = wj
t copies of the samples

(S
(j)
t , µ

(i)
θt

, σ
2(i)
θt

). Denote Lr = m−∑m

j=1
`j .

2. Obtain Lr i.i.d. draws from the original sample set

{(S(j)
t , µ

(i)
θt

, σ
2(i)
θt

)}m
j=1, with probabilities proportional to

(wj
t − `j), j = 1, 2, · · · , m.

3. Assign equal weights, that is, set wj
t = 1, for each new

sample.

It is shown in [12] that the samples drawn by the above

procedure are properly weighted with respect to p(St|Y t),

provided that m is sufficiently large. Note that resampling

at every time step is not needed in general. In one way the

resampling can be done every k0 recursions where k0 is a

prefixed resampling interval. On the other hand, the resam-

pling can be carried out whenever the effective sample size,

approximated as

N̂eff =
1∑m

j=1
(wj

t )
2
≤ m (28)

goes below a certain threshold, typically a fraction of m. In-

tuitively, N̂eff reflects the equivalent size of i.i.d samples

from the true posterior densities of interest for the set of m

weighted ones. It is suggested in [13] that resampling should

be performed when N̂eff < m/10. Alternatively, one can con-

duct the first approach to conduct resampling at every fixed-

length time interval say every five steps.

6. SIMULATION RESULTS

In this section, we provide some computer simulation exam-

ples to demonstrate the performance of the proposed SMC

approach for blind phase noise estimation and data detec-

tion. The phase process is modelled by AR process driven

by a white Gaussian noise with σ2
u = 0.0314. It is assumed

BPSK modulation is employed. In order to demonstrate the

performance of the adaptive SMC approach, we first present

the performance (in terms of the phase error φ(k) = θt − θ̂t )

during one simulation run for different initial phase errors

φ(k) = 0, π/4, π/2, 3π/4, π. The phase error for several val-

ues of φ(0) at SNR = 10dB is shown in Fig. 1.

The performance of the proposed algorithm is further ex-

ploited by the evaluation of average BER over observed block

for different SNRs and different intial phase errors. The un-

coded average BER performance of this adaptive approach is

plotted in Fig. 2.

Our simulations indicate that

• as the initial phase error φ(0) approaches π, the probabil-

ity that the phase error converges to the dual equilibrium

point becomes very high

• as the initial phase error φ(0) approaches π, the BER

increases, for φ(0) = π, the BER is almost equal to 1 (due

to ambiguity).



7. CONCLUSIONS

We have developed a new adaptive Bayesian approach for

blind phase noise estimation and data detection based on

sequential monte carlo methodology. The optimal solutions

to joint symbol detection and phase noise estimation problem

is computationally prohibitive to implement by conventional

methods. Thus the proposed sequential approach offers an

novel and powerful approach to tackling this problem at a

reasonable computational cost.
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