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ABSTRACT 

Several approaches have been proposed to improve the 
compaction performance of the wavelet transform by taking 
into account the singularities present in the image and their 
2D directionalities. This improvement is valid both for 
compression and de-noising applications. Here, we 
investigate an edge adaptive wavelet transform which has a 
better rate-distortion characteristic than the classical wavelet 
transform. The proposed approach can be viewed roughly as 
a combination of image segmentation and shape adaptive 
wavelet transform. The algorithm consists of two steps. In 
the first step we locate edges by using a sigma filter. In the 
second step we apply the modified wavelet transform on the 
separated parts of the image. We provide performance re-
sults in terms of rate-distortion curves for both 1D and rela-
tively simple 2D signals.  

1. INTRODUCTION 

The wavelet transform is known for its approximation 
power. For certain classes of signals the error decay rate can 
be given as a function of the number of coefficients and the 
number of vanishing moments that wavelets have. Practitio-
ners have observed that non-negligible wavelet coefficients 
are locally concentrated around singularities and decay 
slowly as we move away from singularities.  

Good performance of wavelets in 1D has made the 
wavelet transform one of the main tools in signal processing 
applications, especially denoising and compression. Similar 
performance was expected for 2D signals but has not been 
achieved. This is simply because wavelets are better at cap-
turing discontinuities present in 1D signals than they are in 
2D signals [1]. This has led researchers to explore enhanced 
wavelet transforms that are better able to capture singularities 
present in 2D in a compact manner. 

In [2], an approximate digital Radon transform is com-
puted in the Fourier domain which maps 1D smooth singu-
larities into points. Then the 1D wavelet transform is used to 
efficiently represent them. The resulting directional bases are 
called ridgelets and the transform a ridgelet transform, re-
spectively. They achieve improved performance for objects 
with straight edges. Ridgelets are combined with multiscale 
schemes and band pass filtering gives rise to curvelets, [3]. 
Since non-straight edges become straight locally with in-
creasing scale curvelets achieve better performance for ob-

jects with non-straight edges. These bases are redundant and 
not applicable for compression but provide nice results for 
denoising applications. In [4] a local directional representa-
tion is developed by combining a multiresolution scheme 
with directional filter banks which resulted in contourlets.  
The treatment of edges in these previous two approaches are 
by aligning the transform bases in the same direction as 
edges. Another approach is developed in [5] where the edges 
in the image are decomposed into wedgelets of different ori-
entations. A similar idea is developed in [6]. First singulari-
ties are detected vertically and horizontally with foveal 
wavelets and then these singularities are chained to form 
edge curves. 1D wavelet transform is applied along the 
curves to represent them efficiently. Finally, the residual im-
age outside the singularities is represented by a 2D standard 
wavelet transform efficiently. The main point in these previ-
ous two papers is to adaptively represent the singularities 
efficiently rather than designing directional bases.  

Both [7] and [8] have approached the problem from a 
different perspective. The key point is to avoid producing 
large coefficients from the same edge point in an adaptive 
manner rather than designing directional bases or removing 
edges. A Lifting scheme is used to approach the problem 
which can be decomposed in prediction and update parts. 
The former introduces prediction operators based on least-
square fitting while the latter reduces prediction size near 
edges. 

Our goal in this paper is also based to detect the singu-
larities in a first step and then apply a modified wavelet 
transform in the second step. In 1D this corresponds to signal 
segments separated by individual singular points. Either even 
length or odd length independent wavelet transforms are per-
formed along these signal segments. The resulting wavelet 
transform matrix is orthogonal meaning that there is no sta-
bility issue involved in the reconstruction. In 2D the picture 
becomes smooth image regions separated by edge curves and 
the same idea is applied there. 

Details to parts of our approach are available in the fol-
lowing sections. Section 2 describes the edge detection proc-
ess by using the sigma filter. The description of the modified 
wavelet transform constitutes Section 3.  Section 4 shows 
some performance results in terms of rate-distortion curves. 
We conclude with some future directions and discussions in 
Section 5. 



2. SMOOTH IMAGE REGION IDENTIFICATION 

As mentioned above we are using a two step algorithm. The 
goal of the first step which we describe here is to detect the 
dominant edge points so that the resulting image will be 
composed of textures separated by edges. There are many 
candidate edge detectors available like the simple Prewitt, 
Sobel or more sophisticated Canny edge detectors to name a 
few. But they do not exactly fit the purpose that we want to 
implement. One of the reasons is that all edge detectors 
when applied to a simple image create many edge points and 
they may also create edges corresponding to noise. Since the 
application we intend is compression and we are going to 
code the edge points in order to be able to reconstruct the 
signal from the coefficients, we want to detect only domi-
nant edges available in the image. Our Sigma filter [9] mod-
els the image as combinations of image regions consisting of 
constant pixel values corrupted by additive Gaussian noise. 
For every pixel value a new pixel value is computed itera-
tively by using neighbouring pixels in a window. The result 
is a cartoon looking image separated by strong edges. Using 
a threshold parameter weak edges are wiped out. It is a 
structure preserving noise removal process. Since we need 
to find the coordinates of the edges after this process we use 
contour lines for that purpose since they provide closed edge 
curves which will ease the process when doing the wavelet 
transform. The Sigma filter produces edge curves that en-
close highly correlated pixels. This correlation is expected to 
yield very small high pass wavelet coefficients. Actually if 
the image is composed of piecewise constant regions mean-
ing constant  pixel values separated by edges then the high 
pass wavelet coefficients for any region will be exactly zero 
due to the inherent vanishing moment property of wavelets.  

3. MODIFIED WAVELET TRANSFORM 

Here we explain how to modify the wavelet transform in 
order to apply it to the input we get from previous part. The 
inputs are the image regions and corresponding edge coor-
dinates or shape information. The wavelet transform we 
consider is the two channel case. We want to perform the 
wavelet transform on these image regions with their shape 
information given and the result will be the same number of 
wavelet coefficients as they are in the image segments. But 
the standard wavelet transform cannot be applied directly 
since it has problems with signal boundaries and results in 
more wavelet coefficients than the signal has. Further, it 
produces even number of wavelet coefficients. The two rea-
sons lead us to modify the wavelet transform matrix so that 
it preserves its orthogonality when applied to finite length 
signals and produces the same number of wavelet coeffi-
cients as the signal has. Further, it should be applicable to 
odd length signals.  
        One approach to this issue designs boundary filters in 
order to keep the orthogonality of the wavelet transform 
matrix. Depending on the filters’ length the design ends up 
with varying number of boundary filters increasing with 
filter length. For these boundary filters the vanishing mo-
ment property is lost. Instead we preserve the orthogonality 
by circularly shifting the filter coefficients which corre-

sponds to circular signal extension at both ends of the given 
finite length signal. Since circular extension will merge the 
beginning and the end of the signal it is expected to have 
high frequency wavelet coefficients for those parts if the 
merged parts differ from each other. In our case, since the 
two ends are from the same smooth region, high frequency 
wavelet coefficients are not produced.  

The design is completed with the extension of the wave-
let matrix to an odd length signal. We do this simply by keep-
ing the last signal point as a low pass wavelet coefficient. 
Since we want the modified wavelet transform to perform 
perfectly for a step edge, we scale the low pass filter with 
their sum so that their sum ends up to one. This way the last 
signal point which will be kept as the low pass coefficient 
will have the same scale as the other low pass coefficients 
and will not produce any problem for the next scale wavelet 
coefficients. In order to be clear we will show the design 
mathematically next. Putting the edge coordinates apart let’s 
assume an odd length signal X = [ x(1) x(2) … x(N) ]T is 
given. The low pass and high pass filters are also given as g 
and h both of length 2K, respectively. Defining the matrices 
Gi and Hi as below then the wavelet transform matrix W for 
the odd length signal will be as in (1). 

 
 
Gi = [ g(2i) g(2i+1) ]  Hi = [ h(2i) h(2i+1) ] 
 
 
 

        G0  G1  …GK-1  0 … …  … … 0   0 
         0    G0  G1  … GK-1   0… … …0   0  
    …  …  … 
        G1  G2 … GK-1  0  …  …         G0  0   
      W =         0     0  …     …        1     (1) 
         H0  H1  …HK-1  0 … …  … … 0  0 
          0   H0   H1  … HK-1   0… … …0  0  
    …  …  … 
         H1  H2 … HK-1  0 …  …          H0 0 
 
 
The upper part of the matrix consisting of Gi’s and the lower 
part consisting of Hi’s are same size of [(N-1)/2] X [N]. The 
middle row with all zeros and a one in the end takes care of 
the odd-length of the given signal. This way we construct an 
[N X N] orthogonal wavelet transform matrix. Multiplication 
of this matrix with the signal vector as W * X produces the 
wavelet coefficients where the first (N-1)/2 + 1 coefficients 
are low pass coefficients and the last (N-1)/2 are high pass 
coefficients, respectively. The same structure is used with the 
low pass coefficients as the input signal for the next scale 
until one low pass coefficient is left. This way we will have 
only one low pass coefficient for a step edge as input and all 
the high pass coefficients will be zero independent of the 
filter length. This is not the case when the standard wavelet 
transform is performed on a step edge. Many low and high 
pass coefficients are produced. One thing remains here to be 
noted that at any scale if the number of low pass coefficients 
gets smaller than the filter length the shorter available filter is  
 



 

 
used for the next scale. The modified wavelet transform im-
plementation is depicted in Figure 1. 
In 2D after edge detection we are end up with piecewise 
smooth regions with closed contours. The modified wavelet 
transform is applied to each region as the standard 2D sepa-
rable wavelet transform is done where low and high pass 
filters are applied first on the rows then on the columns and 
this structure is repeated on the low-low image until the de-
sired scale is reached.   

4. RESULTS 

In order to show how the modified wavelet transform works, 
we provide performance results both for a 1D signal and an 
image. The 1D signal is the vertical scan line at the 204th 
column of the moon.tif image and shown in Figure 2, top 
plot. As it can be seen from Figure 2, bottom plot, its sigma-
filtered version is smoother and weak edges are wiped out. 
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Figure 2: (top): Vertical scan-line of the original moon im-
age, at x2=204. (bottom): Same scan-line of the sigma-
filtered moon image.  
 
The edge points are detected using the sigma-filtered signal. 
They are found at points 87, 351, and 410, respectively. 
Since there are three edge points we have four signal seg-
ments. The resulted transform coefficients consist of one low 
pass coefficient and the rest are high pass coefficients for 
each segment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For comparison purposes we computed 7-level standard 
wavelet transform on the original 512 length signal which 
produces again four low pass coefficients and the rest are 
high pass coefficients. Both of the resulting transform coeffi-
cients are sorted in descending order. Then the signals are 
reconstructed using those sorted transform coefficients start-
ing from 1 to 512. The distortion measure used is σ2

d/σ2
s 

where σ2
d is the energy between the reconstructed and origi-

nal signals and σ2
s the energy of the original signal. The per-

formance can be seen in Figure 3. The wavelet filters used 
are dB5, length 10 Daubechies filters. Only the performance 
up to 80 samples is shown since already zero distortion is 
reached. The modified transform performs better all the time 
but its superiority is clear when a few number of coefficients 
are used for reconstruction. That supports our idea of design-
ing edge adapted wavelet transform. 
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Figure 3: The performance comparison of modified and 
standard wavelet transform. 
 
We expect more gain in 2D. In order to show that we take the  
synthetic moon image shown in Figure 4, top. It is sigma 
filtered and then closed edge curves are detected. For com-
plexity purposes only two edge curves are selected here. The 
edge curves are plotted in Figure 4, bottom. For performance 
comparison we computed the 3-level separable 2D standard 
and modified wavelet transforms, and the finite ridgelet 
transform [10].   
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Fig 1: Modified Wavelet Transform with Edge Adaptation 



image

edge curves

 
Figure 4: (top): Moon image of size [256x256]. (bottom):  
Edge curves after sigma-filtering 
 
as described in the end of Section 3. The wavelet filters used 
are dB4, length 8 Daubechies filters. All three transforms’ 
non-linear approximation powers are evaluated in terms of 
signal-to-noise ratio (SNR) for comparison by using the N 
largest transform coefficients to reconstruct the original im-
age. The results can be seen in Figure 5. From top to bottom, 
the first curve is the transform coefficients of the modified 
wavelet transform, the second curve is the transform coeffi-
cients of the standard wavelet transform  and the third curve 
is the transform coefficients of the finite ridgelet transform, 
respectively. It is seen clearly that the modified wavelet 
transform achieves better performance than the others. This 
applies to image compression since it is done after threshold-
ing very small transform coefficients. Since the moon image 
used for comparison does not have straight edges, the per-
formance of the finite ridgelet transform is poorer. 

5. CONCLUSION 

We have shown an edge adapted wavelet transform applica-
ble to image compression. That is done by first detection the 
edge curves on the sigma-filtered image and then modifying 
the wavelet transform accordingly based on the edges pre-
sent in the image. Better performances are observed both for 
1D and 2D as shown with examples. 
As described in related sections the modified wavelet trans-
form consists of two parts; shape information (edge curves) 
and transform coefficients for each region. We only deal 
here with the latter part although for practical image com-
pression applications former part also has to be coded sepa-
rately. As a result bit budget should be efficiently shared 
between shape information and transform coefficients for 
coding. There is a trade off between these two parts. We 
don’t want to spend the bit budget for a relatively complex 
shape if the transform coefficients from the region inside the 
shape do not result in high gain in reconstruction. In this 
respect the chosen curves might be chosen to be certain easy 
to code shapes. Similarly, regions with relatively small areas 
should be ignored and not coded separately. This can be 
done in the sigma filtering part by tuning the threshold pa-

rameter or in the edge deciding part by morphological proc-
essing. 
Finally, since the image consists of multi regions with dif-
ferent properties, the application at hand can be modified for 
every region differently. 
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Figure 5: Comparison of non-linear approximations of the 
image in Figure 4, top, using the modified and standard 2D 
separable wavelet transforms and the finite ridgelet trans-
form. 
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