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ABSTRACT

To carry out a diagnosis, or detect an abrupt change or fault in
dynamic behavior of a studied or supervised system (signal,
system or model), on-line or off-line (according to the treated
case), it is imperative to develop an installation strategy of a
diagnosis tool.

In this paper, various techniques of fault detection are
presented. The role of hypothesis test as tool for fault pres-
ence detection or not and the role of the confidence inter-
val in parameter estimation are shown. Then, the principal
various phases composing fault detection are proposed and
developed.

1. INTRODUCTION

Since the Seventies, the fault or abrupt detection change gave
place to many work [1, 2, 3] in very varied application do-
mains like the dynamic systems control [4], the controlled
systems defects or breakdowns detection [5, 6, 7, 8, 9, 10],
the biomedical diagnosis, speech processing for the recogni-
tion [11], image processing [12] and signal adaptive process-
ing [13].

In what follows, the fault detection techniques are pre-
sented, then a fault detection procedure is developed and fi-
nally a detail is established on several points concerning the
fault diagnosis.

2. FAULT DETECTION ANALYSIS

To carry out effectively a detection, it is first of all neces-
sary to define an event carrying the fault information, which
will be an indicator of fault. This event constitutes the /nfor-
mation Signal 1S. And to take effectively this fault into ac-
count, the knowledge of its arrival moment or fault moment
is necessary to proceed either to a compensation by adapta-
tion (case of new behavior: not stationarity), or a correction
(case of fault). The decision of fault existence or not requires
a decision test established according to a rule to build, which
amounts to doing an hypothesis test, which in a simple case
can be reduced to:

Hy : thereisno fault
Hy, : thereis fault

We present, in what follows, the hypothesis test and the con-
fidence interval, then we develop the five principal phases
constituting the fault detection, namely:

1. to establish the hypothesis test

2. to generate the signal information IS,

3. to detect the fault moment,
4. to estimate the fault amplitude,
5. to compensate the fault.

2.1 hypothesis tests

To extract the informations and to carry out the five preced-
ing stages, we have a series of observations which can be
reliable or not. These observations y" are those of a random
signal realization. The faults problems are based primarily
on assumptions tests. So Hy,...,H,, n equiprobable or not
hypothesis, intervening in the system operation. One has a
series of observations y; and observations probability laws
conditioned by the hypothesis H;.

The existing various hypothesis tests are:

Bayes test

Neyman-Pearson test

Multiple hypothesis test

Composite hypothesis test

2.2 confidence Interval

The existence of a variation =~ = — ( o generally un-
known) called parametric estimation error, justifies a tech-
nique of parameter estimating which utilizes the estimating
by interval in opposition to that of a specific value which
supposes that the parameter was estimated with a known un-
certainty degree [14]. The establishment of this interval is
conditioned by the knowledge of the probability density of
the estimator. One thus consider a significant level that al-
lowing to define two distinct areas laying down the decision
rule of the hypothesis test; one notes:

E, . the hypothesis rejection area,
E, : the hypothesis acceptance area.

These areas of rejection E,. or acceptance E, translate the
statistical procedure defining the hypothesis test.

3. FAULT DETECTION PROCEDURE

3.1 Information signal choice (IS)

The information signal construction means the definition and
the determination of fault information translating accurately
and instantaneously the parameter evolution variation. The
information signal must represent the fault signature. The
problem arising is sow to extract the signature from a fault
starting from the system data or informations.

In general, a system is described by the model (figure 1).
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Figure 1: System in fault

where u(¢) is the measurable input, y(¢) the measurable
output, (¢) the noise, (¢) the variable parameters and x(¢)
the state variables.

According to the considered application , the fault can
correspond may be with a normal system operation but this
system is with time varying parameters. It is the case of non-
stationarinesses whose assumption of responsibility repre-
sents all the problems of the parametric estimation for these
systems [2, 15], maybe with an abnormal system operation;
it is about a defect which should absolutely be detected to
ensure the safety and the reliability of the system [1]. In both
cases, the fault appears in the change of the parameters |,
or of the state variables x, which leads to the change of the
output y.

There are several approaches according to whether the
system modeling is or not possible and according to the na-
ture and the shape of the information signal. One quotes:

e Information signal function of the output [3, 2],

e Information signal function of parametric error,

e Information signal function of the average of the esti-
mated parameters [16],

e Information signal function of the innovation [4, 3, 17],

e Information signal function of the information matrix of
Fisher [14].

3.2 Decision test establishment

That means to detect the occurrence of system fault or defect
under observation and/or estimation. It should be decided
from the information signal, carrying the fault information,
so yes or not a fault exists. This binary decision-making
must be made as soon as the event "fault" takes place (for
the treated on-line systems) and must correspond to the most
probable condition. The choice of the decision test depends
at the same time on the treated application, the selected infor-
mation signal and the law on which it is based. What leads
to two compromises: between, on the one hand the complex-
ity of the test and its effectiveness, and on the other hand
between false alarms and the delay with detection.

We can classify the various procedures of fault detection
in the form of three principal groups depending on the choice
of the decision test.

e Tests based on the density of conditional probability: We
distinguish primarily those which refer to the probability
ratio and its derivatives giving place to 3 tests: the maxi-
mum of probability, the probability ratio generalized [8]
and the Page Hinkley test [2, 17], and those utilizing the

distance between two models [11] like example the di-
vergence of Kullback.

e Tests based on the parametric error: These tests relate to
information signals function of the parametric error, and
are dependent on the choice of a threshold. One quotes
like example the tests based on the parametric error co-
variance and the tests based on the correction of the pa-
rameter vector [17].

o Tests based on confidence interval of information signal:
These tests refer directly to the information signal distri-
bution, and consequently are function of the confidence
interval built on the probability density. One quotes: tests
based on the distribution 2 [9], the Fisher distribution
[14] and the student distribution [14], and tests based on
the probability ratio recursive deviation [17].

3.3 Fault compensation

That the estimate of the fault provides or not its amplitude,
it is possible to compensate this fault. This very significant
phase in an on-line estimation makes possible to correct the
defect or fault and in consequence to increase the adaptive
estimation algorithm performances. Thus the adaptation can
be made even if nonbrutal stationnarities exist, provided that
the changes are weak on average. So the algorithm acquires
the capacity to prosecute these nonstationnarities.

e The fault can be compensated either on the vector param-
eter (z), or state vector X(¢), or the output y(¢) [17],

e One second procedure of compensation is the indirect
compensation by an adaptation gain update P(¢) [16].

4. HYBRID ADAPTIVE ESTIMATE METHODS

The detection procedure, as decomposed before, enables us
to have:
1. A broad choice of ISs which contains the fault,
2. arather significant number of decision tests which allow
the detection of fault in the system parameters, and
3. two general compensation methods of the fault, ones di-
rect and other indirect.

To carry out a complete fault detection and estimate algo-
rithm, it is enough to combine one of the information signals
IS with one of the decision tests and one of the compensa-
tion methods. Thus, a good number of estimate methods,
therefore algorithms, can be obtained. The hybrid adaptive
estimate methods study led to conclude that they have the
capacity of continuation the parametric variations. There are
then several possible approaches such as the Kalman filter,
the Recursive Least Squares with forget factor, the fault de-
tection associated either with least squares [16], or with the
out of lattice filters [16], or with the observers [4], and the
H theory [3]. The interest and the facility of the use of the
regression techniques lead, very often, to the use of paramet-
ric models, linear in the parameters, such linear regression

).
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with  (¢) the unknown parameter vector, y(¢) and ()
are respectively the system output and and the regression lin-
ear vector which are known functions.  (¢) is supposed a
white noise with null average and variance 2. If the noise
is colored of known spectrum, the problem can be brought



back to the case of a white noise by a suitable pre-filtering,
so that the generated estimate will be optimal. This formu-
lation gathers the linear models AR, ARMA, ARMAX or
ARIMAX in the presence of signals drift case, and also the
nonlinear models being able to be formulated in a linear way
on the parameters  (¢).

The algorithm of hybrid parametric estimate methods is
defined by (3):

with:
(¢) € 10,1] : a positive weight function Vz,

(t) : standardization term > 0; (£) =w(z, ),
(¢) : update function of covariance matrix and adapta-
tion gain P(¢) suchas ()= T(¢t)>0.

The application of this generalized algorithm requires
a compromise to be carried out between the capacity of pa-
rameters variations continuation and the desired attenuation
of noise. A suitable choice of the functions (¢) and (7)
give place to several possible algorithms, described below.

The function (¢) who modifies the covariance matrix P,
has as a role to prevent the natural decrease of the gain to-
wards zero:  (¢) > 0 allows to maintain the continuation of
parametric variations. The choice of (¢) must be justified
by a sufficiently large lower limit so that the algorithm man-
ages to follow the variations with a weak delay. This limit
can be reached either by maintaining the trace of P constant,
either by re-initializing P, either still by choosing (¢) such
as an update of P towards an adequate value is made when the
excitation is weak. In the recursive case, one obtains starting
from the generalized algorithm (3), the equations (4) where
— is replaced by the constant

T,
" (k) = P(k=1) (k=1) (k)
(k)= (k=1)+ + Th=1)P(k—1) (k—1)
(k) =y®) = T(k=1)" (k—1)
_ P(k=1) (k=1) T(k—=1)P(k—1)
Pky=P(k—1)— T TUCDPG-T) (k=) +7. (k—1)
“4)
The recursive least squares method is obtained for =0
et = =1.

4.1 The derived different Algorithms

The various algorithms for different expressions of functions
(t) and  (¢) corresponding to derived algorithms from the
Least squares hybrid algorithm are:

1. RLS: Recursive Least Squares:

=1 )=0 (1)=1 ©)

2. Gradient:

P (1) TP,
O+T TP ()

(t) = constant  (6)

(1) =

3. RLS + forget:

[ LP() (1) TP
(1) = [He } [ P(O) = ot Tor0)

(7
=1 <1
4. Kalman Filter:
=1 (@)>0 ®)
5. Covariance update:
(O)=[R=Pt+T)] i@—=t;); (=1 ()
j=1
6. Constant trace:
()= ~ ( T(t)P2(Tt) (1)) P(t)
G (t)+T. T(t)P(t) (7) (10)
(t) =1; C;=trace(R)
7. exponential forget and update:
(= ():0< (<1
O=1+ (1) ") 0); (11)
)= @OPH)- @) )P ()

5. APPLICATION EXAMPLE

In this example, a simulation is achieved on second order
Auto-regressif test signal, the two parameters a; and a; are
the coefficient of the AR model.

Gaussian white noise.
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Figure 2: Construction of the auto-regressif test signal.

The decision test used here is the Chi-2 distribution and
the fault compensation is the covariance matrix. The fig-
ure (2) shows the second order auto-regressif signal, the in-
put signal (gaussian white noise) of the auto-regressif model



and the autocovariance of noise. The results of the estima-
tion method using Chi-2 are shown on the figure (3), where
faults are simulated on the parameter a;(k) at the instants
k =100, 300 and 400, and on the parameter a; (k) at the in-
stant £k = 200. The Chi-2 test detected the faults well even if
their compensation took place a little later like visible at the
instants £ = 300 for a; and k = 200 for a,.
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Figure 3: Parametric estimate based on fault detection: Chi-2
distribution test with covariance matrix compensation.

6. CONCLUSION

We have decomposing the fault detection procedure into 5
phases (the information signal IS, the decision test, the fault
moment ¢, the fault amplitude and compensation). From this
decomposition, we studied the fault detection techniques by
quoting several examples existing in the literature.

This development enabled us to stress several points:

1. the fault detection application domain is very varied,

2. Its goal is to generate a system diagnosis under monitor-
ing or control,

3. the available tools for the realization strategy can be done
by various approaches in the frequential and/or analytical
domain,

4. the used statistical approach is justified by the dubious
environment of the fault event,

5. the importance of the hypothesis test role, the confidence
interval and the probability density could be highlighted,

6. the Information Signal construction, carrying the fault in-
formation, which is preliminary phase to any detection
procedure, are primarily based on the estimation errors,

7. the decision tests can form tree principal groups:

o the tests concerning the density of conditional proba-
bility,

e to base on the parametric error,

e and those built in the confidence interval of informa-
tion signal.

8. the fault moment can be estimated,

9. the fault compensation allows to rectify the fault and/or
to adapt the system to the new model.
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