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ABSTRACT

The computational complexity of evaluating homologies be-
tween a gene sequence and profile Hidden Markov Models
(HMMs) is relatively high. Unfortunately, researchers must
re-evaluate matches every time they discover an error in a
sequence or encounter a mutation of the sequence. Since
these occurrences are frequent, it is desirable to have a low
complexity procedure for updating the matching result when
a small perturbation in a given input gene sequence is ob-
served. In this paper, we describe such a procedure based on
a sensitivity analysis of the Viterbi algorithm used to evalu-
ate the similarity of an unknown gene sequence and a pro-
file HMMs. By extending single arc tolerance bounds to the
evaluation of the relative change in all nodes’ distances from
a root node, our algorithm skips all unperturbed parts of a
sequence. As a result, our proposed algorithm can update the
matching decision in only 20% of the time required by the
current approach that computes a new match with the per-
turbed sequence and base HMM model.

1. INTRODUCTION AND PREVIOUS WORK

HMMs are the underpinning of the sophisticated analysis
techniques used in molecular computational biology, includ-
ing Gene finding, phylogenetic analysis, and protein struc-
tural modeling[1]. The Viterbi decoding algorithm measures
a similarity of an unknown sequence with profile HMMs[2]
that model families of sequences. Recently, it has be-
come more important to detect remote homologies by query-
ing a newly discovered sequence against large libraries of
HMMs[3]. However, a major challenge in real wet labs is
that most gene sequences are quite lengthy and contain errors
with high probability. Therefore, even a single correction of
a symbol of a sequence will trigger all similarity recompu-
tations, a process that takes hours or days. Furthermore, if
a mutation has multiple sequences, the similarity evaluation
must be repeated for all these sequences.

In order to cope with these update problems, it is im-
perative to have an innovative framework for the sensitivity
analysis of the Viterbi algorithm. Several efficient algorithms
have been studied to alleviate this problem. They balance af-
fordable computation with accuracy. For example, the prun-
ing approach only keeps the K highest scoring paths with
a sufficient likelihood of success[4]. This approach has a
weakness in that it fails to detect ‘dark horses’. The token
passing approach explicitly keeps track of all useful paths
history. The stack decoding alleviates the weakness of the
pruning approach by estimating the best possible score of
several paths[5]. However, it is very complex and highly sen-
sitive to the selected heuristics.

Our work is based on the observation that dynamic pro-
gramming is equivalent to finding the shortest path in di-
rected acyclic graphs(DAG). A sensitivity analysis of dy-
namic programming has been accomplished in the sense that
the tolerance to the perturbation to any individual edge can
be evaluated [6]. Our work extends prior work on the sen-
sitivity analysis of dynamic programs to examine the effect
of perturbations in multiple edges on the previously identi-
fied optimal match. Our approach leads to a higher perfor-
mance that is five times faster than the normal application
of the Viterbi algorithm to the perturbed gene sequence. In
section 2, we revisit the basic sensitivity analysis of dynamic
programs. Our novel work is described to address the lim-
itation of this prior analysis. In section 3, we describe our
new procedure. In particular, we detail the construction and
use of a “sensitivity repository” that helps cut computational
complexity at run time when the matching decision needs to
be updated. We also provide a performance evaluation. In
section 4, we discuss future work.

2. THE LIMITATION ON THE STATIC
SENSITIVITY ANALYSIS

2.1 Model with Assumptions
Given a model, λ ≡ (A,B,π) containing the transition prob-
ability, the observation probability, and the initial state dis-
tribution respectively in a HMM, the Viterbi algorithm pro-
vides the optimal solution indicating which path q̂ most
likely explains the version v of a sequence k, Ok(v) that is
o1, · · · , õi, · · · , õ j, · · · ,oT . Let the path q be q1,q2, · · · ,qT ,
then

q̂ = argmax
q

P(Ok(v),q|λ ) (1)

This alignment process has a complexity of O(T S2) in time
and O(T S) in space, where T and S specify the length and
the number of states[7]. Let G(Ok(v)|λ ) be a trellis graph
that is obtained by using the negated logarithm of the con-
ditional probabilities as arc lengths. A shortest path tree
TB(Ok(v)|λ ) can be readily constructed by applying Dijk-
stra’s algorithm (Fig.1). While assuming this λ is un-
changed, Ok(v) can be a new version of an initial sequence
Ok(0) that is o1, · · · ,oi, · · · ,o j, · · · ,oT . It is interesting to
know that the Ok(v) generates a G(Ok(v)|λ ) with only dif-
ferent arc length on column i and j from G(Ok(0)|λ ). Let
nc,s be the node in a column c and a state s. Assuming we
have a distance d(nc,s) of the path P(B;nc,s) from B to node
nc,s, then it is necessary to define a cost for each non-tree
edge e /∈ E(TB(Ok(0)|λ )) where E is an edge set. The cost of
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Figure 1: Viterbi Trellis Graph

ec+1,s2
c,s1 , i.e., the edge from nc,s1 to nc+1,s2 is

∆(ec+1,s2
c,s1 ) = d(t(ec+1,s2

c,s1 ))+w(ec+1,s2
c,s1 )−d(h(ec+1,s2

c,s1 )) (2)

,where h, t, and w signify head, tail, and the length of ec+1,s2
c,s1

respectively. It is vital to view ∆(ec+1,s2
c,s1 ) as the cost to pay

for selecting a non-tree edge. Any ∆(e) in TB(Ok(0)|λ ) is
obviously 0. In addition, when an e is cut out of TB(Ok(0)|λ ),
two subtrees T ′B and T ′h(e) are derived. Let N+(e) be the set of
nodes in T ′B and N−(e) those in T ′h(e). Thus, a set of non-tree
edges crossing between these node sets are defined as cutset
of G(Ok(0)|λ ). If e ∈ TB, then

C+(e) = {∀é f rom N+(e) to N−(e), é /∈ TB} (3a)

C−(e) = {∀é f rom N−(e) to N+(e), é /∈ TB} (3b)

2.2 Problem Definition
The arc tolerance specifies an allowable range of perturbation
δ (e) in the arc length such that the previous optimal TB is still
effective in a new graph, as explained the following result.

Definition 1. Given a spanning tree T of a DAG, the arc tol-
erance is the maximum increment or decrement in the length
of a single arc without affecting the optimality of T.

For a non-tree edge e, the lower arc tolerance bound
δ−(e) is −∆(e). If w(e) decreases below this bound, e it-
self becomes a tree edge. However, there is no upper arc
tolerance bound δ+(e) since e does not stay on TB. For a
tree edge e, on the other hand, its tolerance bounds are deter-
mined by non-tree edges of cutsets induced by removing the
e. The following theorem is proven in [6].

Theorem 1. If e ∈ TB then,
δ−(e) = max{−∆(é)|é ∈C−(e)},
δ+(e) = min{+∆(é)|é ∈C+(e), é 6= e}

Assuming that e3,1
2,1 has the smallest cost in C+(e3,1

2,2) of
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Figure 2: partial node tolerance assignments

take away nodes from N+(e3,1
2,2) since the first recipient e4,3

3,1
has the smallest cost. This sensitivity analysis is ‘static’ in
the sense that the tolerance calculation for an edge is per-
formed while all other edges stay constant. In our scenario,
however, Ok(v) changes all arcs lengths that correspond to the
modified columns in G(Ok(0)|λ ) simultaneously. Therefore,
the previous analysis is not applicable to T (Ok(v)|λ ) directly.
In reality, it turns out that the optimal tree depends on rela-
tive perturbation differences to the each state of the updated
column. We refer to this concept as ‘dynamic’ perturbation.

3. DYNAMIC SENSITIVITY ANALYSIS OF THE
VITERBI ALGORITHM

We first consider how updated distance of nodes in a column
can be decomposed when a perturbation occurs. For exam-
ple, when an updated sequence Ok(v) is given (i.e., there is
“perturbation” in column 3 as in Fig.1), the new distance can
be updated by

d′(n3,s2) = d(n2,s1)+δ (ok(v)
3 ), 1≤ s1,s2≤ S (4)

where, δ (ok(v)
3 ) reflects a perturbation between column 2 and

3. There is no change in T (Ok(0)|λ ) before column 3. Once
the perturbation “d′(n3,s2)− d(n3,s2)” is evaluated, we can
figure out whether it propagates into the next column in terms
of a distance to each node. If the node distance is carried out,
we relate our sensitivity analysis to the nodes.

Definition 2. Given an optimal T (Ok(0)|λ ) corresponding
to G(Ok(0)|λ ), the node tolerance is the maximum incre-
ment δ+(n) or decrement δ−(n) in the distance of a single
node n from a start node that does not affect the optimality of
T (Ok(0)|λ ).

We switch over to the analysis of a node tolerance as
in definition 2. Suppose that e5,1

4,3 has the smallest cost in

G(Ok(0)|λ ). When tracing back from both tail and head
of the e5,1

4,3 toward B, we identify a subtree Tn2,2 that has



two branches with these terminals. Tn2,2 has root n2,2 as a
greatest lower bound (GLB) for both paths P(n2,2;n5,1) and
P(n2,2;n4,3). Other edges would not participate in deciding
node tolerance in this tree. When we evaluate the relative
change in a node’s distance, an upper bound of a state in any
column coexists with the other state’s lower bound in that
column and vice versa. This is a consequence of the fact that
G(Ok(0)|λ ) has a specific structure of trellis where all nodes
between only two consecutive columns are connected. There
are S− 1 bounds for each node with respect to other states.
Each node of the subtree can be constrained with its tolerance
by the following theorem.

Theorem 2. If ∆(e0) = min{+∆(e)|e ∈ T (Ok(0)|λ ), then
±∆(e0) is propagated as δ+(n) for all n’s (except
GLB(h(e0), t(e0)) and h(e0)) in p(GLB(h(e0), t(e0));h(e0))
and as δ−(n) for p(GLB(h(e0), t(e0)); t(e0)).

Proof. Since p(B;GLB(h(e0), t(e0))) is shared between two
paths, ∆(e0) cannot affect any node’s tolerance from the
starting node to GLB(h(e0), t(e0)). Considering two virtual
edges, v+ and v− between two distinct nodes in any col-
umn of TGLB(h(e0),t(e0)), h(v+) corresponds to t(v−) and vice
versa. v+is directed toward p(GLB(h(e0), t(e0)); t(e0)) with
a length corresponding to d(t(v+)). Thus δ+(v+) is +∆(e0)
while δ−(v−) is −∆(e0) according to Theorem 1.

Corollary 1. While the δ (e0) propagates the tolerance for
nodes of TGLB(h(e0),t(e0)) according to Theorem 2, all e’s from
p(GLB(h(e0), t(e0)); t(e0)) to p(GLB(h(e0), t(e0));h(e0))
are annihilated.

By following the proof in Theorem 2, +∆(e0) =
δ+(v−) = min{+∆(é)|é ∈ C+(v−)} can be deduced. It is
also clear that all é’s are confined to TGLB(h(e0),t(e0)). There-
fore, C+(v−)−{e0} is unable to contribute to the tolerance
assignment for any other nodes in T (Ok(0)|λ ). For example,
+∆(e5,1

4,3) is stored as an upper bound for the pair path’s state

3 in n4,2(i.e., δ+
3 (n4,2) ← +∆(e5,1

4,3)). On the other hand, at

n4,3, −∆(e5,1
4,3) is recorded as a lower bound for its pair state

2(i.e., δ−2 (n4,3)← ∆(e5,1
4,3)). Similarly, in column 2, n3,1 has

+∆(e5,1
4,3) as an upper bound for state 2 and−∆(e5,1

4,3) as lower

one for state 1 at n3,2. Then e4,2
3,2 is crossed out since it is

not evaluated any more. This procedure is accomplished all
the way down right before GLB(h(e0), t(e0)) as illustrated in
Fig.2. Up to this point, only how the edge of smallest cost
gets involved in deciding tolerance of nodes on its connected
paths is considered. We consider the selection of the edge on
which tolerance propagation should be performed and also
resolve the case where more than two costs have conflicting
bounds. Our algorithm is completed with the following the-
orem.

Theorem 3. A node tolerance analysis resulting in any ∆(e)
larger than that of the edge used in the previous analysis step
according to Theorem 2 is not allowed to replace the node
bounds which were previously assigned.

Proof. Suppose we identify a pair of nodes, n− and n+ of
which bounds has already been assigned in previous step.
Considering a virtual edge v+ from n+ to n−, ∆(e0) is

still smallest in the non-tree edges from N(p(n+;h(e0)))∪
N(p(n+;h(e))) to N(p(n+; t(e0)))∪N(p(n+; t(e))). Thus,
∆(e) is discarded.

Tolerance propagation by the cost of an edge e would be
discontinued at either, coming across the first node that has
been assigned previously or GLB(h(e), t(e)). Therefore, it
is essential to sort the ∆(e) value in an increasing order be-
fore we directly evaluate the tolerance for each node. For
example, let ∆(e5,2

4,3) be the next to smallest. After the cost is
assigned to n4,1 and n4,3, it stops propagating at the pair of
node, n3,1 and n3,2 of the column 3 (Fig.2(a)). In this case,
∆(e5,1

4,3) remains the smallest in a cutset from N(p(n3,2;n4,3))
to N(p(n3,1;n5,1)) ∪ N(p(n3,1;n5,2)). Our dynamic sensi-
tivity analysis of Vitebi algorithm is based on the off-line
computation of a repository of node distance and tolerance
bounds. A computational complexity of building a reposi-
tory is O(T S2). However, the algorithm boosts up the overall
computation’s performance by removing unnecessary edges
to be evaluated or avoiding duplicated tolerance propaga-
tion. The pseudo codes in Algorithm 1 summarizes our pro-
posed solution. Once the preliminary repository is obtained,
a matching process is initiated from the first different col-
umn in Ok(v) decoding procedure for updated sequence or
slight varies of multiple observation as Algorithm 2. Once
the perturbation of each node satisfies its tolerance bound in
the column, the decoding process can hop on the next up-
dated column which conceives that there was a perturbation
in its own column. Therefore, decoding by multiple updates
can be accomplished generally.

Algorithm 1 off-line dynamic sensitivity analysis

1: convert Ov(0)|λ (A,B,π) to DAG with “− log”
2: {p[n],d[n]}← Dijkstra(DAG)
3: repeat (2) for ∀et+1, j

t,i /∈ TB
4: Q← sort(E,cost,ASCEND)
5: repeat
6: e← pop(Q)
7: (nin,nout)← (tail(e), p∗(head(e))) {*return a direct ascendant}
8: repeat
9: sin ← state(nin); sout ← state(nout);

10: if δ−sout
(nin) or δ+

sin
(nout)==NULL then

11: δ−sout
(nin)←−∆(e); δ+

sin
(nout)←+∆(e)

12: else
13: break
14: end if
15: Sold

out ← Sout ; (nin,nout)← (p(nin), p(nout))

16: delete(Q,ec+1,Sold
out

nin )
17: until nin! = nout
18: until Q != EMPTY

4. EXPERIMENTAL RESULTS

There are two main computation phases in our proposed
decoding procedure. First, a recursion of the Viterbi al-
gorithm would be performed for updated columns that ex-
ceed the node tolerances(3:4 of Algorithm 2). Secondly, it
requires the computation to evaluate the perturbation with
its tolerance(5:12) and propagating the updated distance to
the next updated column(13:19), which we define as “con-
trol time”. The overall computational complexity is O(T S).



Algorithm 2 on-line decoding process for updated sequence

1: u ← 1, c ← δ ∗(Ok(0),Ok(v))[u] {*:it generates the vector of updated
columns index}

2: while c≤ T do
3: update d′(nc,i), δi ← d′(nc,i)−d(nc,i) for each state
4: tolerant ← true, j ← 1
5: while tolerant AND j ≤ S do
6: for (i = j +1 to S) do
7: if !(δ−i (nc, j)≤ (δ j−δi)≤ δ+

i (nc, j)) then
8: tolerant ← false
9: end if

10: end for
11: j ← j +1
12: end while
13: if tolerant then
14: next ← δ (Ok(0),Ok(v))[++u]
15: d′(nnext,i)← d(nnext,i)+δi for each state* {*necessary to iden-

tify the corresponding branch}
16: c← next+1
17: else
18: c← c+1
19: end if
20: end while

|−→δ (Ok(0),Ok(v))| T locality(%)

I
3 120 100
6 120 100
9 120 100

18 120 100
36 120 100
72 120 100

II
5 60 100
5 120 100
5 240 100

III
6 120 10
6 120 20
6 120 40

Table 1: experiment configuration to evaluate three depen-
dencies

In our experimental configuration, we synthesize a simple
model, λ having 4 states and 10 symbols and we take into
account three dependencies such as a number of updated
columns, sequence length, and the locality in the sense of
updated column ranges. Our algorithm for sensitivity reposi-
tory and decoding procedure is implemented with ANSI C
language and we perform the experiments under 1.5GHz
Intel Pentium M processor R©. In Fig.3(a), the computa-
tional time of the proposed algorithm highly depends on the
number of updated columns since it leads a higher chance
that it needs more columns for updated sequence to come
back to the “right track” of the previous optimality. When
we handle 3 updated columns, proposed scheme consumes
.461µsec, which is only 20% computational time of the nor-
mal Viterbi(2.320µsec). We assess how much time each
computation consumes in Fig.3(b). In 9 column updates, av-
erage 18.4 columns are computed for .545µsec and .506µsec
is consumed for either evaluation or propagation. On the
other hand, as updated symbols becomes dominant(i.e., 36
out of 120'30%), the selected decoding time becomes enor-
mously large, deteriorating the performance. In Fig.3(c),
the computation time of the proposed scheme stays almost
constant since only the propagation portion gets increased
while elapsed time becomes lengthy in the normal scheme.
In Fig.3(d), more interestingly, the proposed scheme takes
longer to complete as the range of column updates in the
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sequence increases since a new sequence having burst up-
dated columns increases the probability that tolerances are
exceeded.

5. DISCUSSION

In this work, the sensitivity analysis of the Viterbi algorithm
is extended to capture a minimum information to perform an
efficient decoding computation for either variant or slightly
updated sequences. The major shortcoming of our approach
is the space complexity of O(T S2) in the process of build-
ing a sensitivity repository. It is possible to reduce the space
when we discard a relatively large bounds exceeding differ-
ence of any combination of symbol change with a compres-
sion scheme and also it would be valuable to appreciate a
partnership with the K-best optimal decoding paths. In our
practical implementation, we plan to integrate our seamless
decoding procedure with sensitivity repository into object-
based storage disk supporting the fast sequencing updates of
cross-species genome.
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