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ABSTRACT
The objective of this paper is the development and analysis of
methods for producing digital elevation models from physi-
cal scanned maps having as little as possible human interac-
tion. The elevation layers are identified based on the map’s
legend using the CIE L*u*v* color space, the mean shift fil-
tering and the randomised local search color clustering. The
nonelevation layers within the map image generates unclas-
sified pixels. Their values are estimated using geostatistics
(i.e. kriging). In the end, the elevation contours are extracted
and interpolated.

1. INTRODUCTION

The manual digitization process of the paper maps is costly
and tedious. An automatic or semi-automatic method in-
creases the efficiency, but it is a challenging problem. A
solution that works in the gray scale domain can be found
in [1]. An approache in the color domain is offered by ref.
[2]. None of the methods is fully automated.

A digital elevation model (DEM) is a basic geographical
data type, stored using an ASCII or binary file and it allows
the generation of 3D renderings for a specific earth surface
area. Remote sensing and satellite imagery are used to obtain
high quality DEMs. But this is not an affordable solution for
each case. The elevation data extracted from a scanned map
can offer a cheaper way to produce DEMs.

Arrighi et al. in [3] use topographical maps to obtain
the altitude information.This paper focuses on physical maps
where colors are used to express the elevation. The map’s
legend shows the colors that are used to symbolize the alti-
tude data within the map and also the elevation ranges de-
noted by each color.

This work proposes an approach for producing digital el-
evation models based on the map’s legend and geostatistics.
The paper is organized as follows. We start in Section 2 by
giving details about the method used to extract the elevation
layers from the scanned map that includes conversion into
CIE L*u*v* color space, mean shift filtering and RLS clus-
tering. An approach for estimating the unclassified pixels
based on kriging is presented in Section 3. Also, this section
summarizes the methods used for the contours extraction and
interpolation. Conclusions are drawn in Section 4.

2. LEGEND BASED ELEVATION DETECTION

The identification of the elevation layers within a physical
scanned map is not an easy task. Usually, a paper map com-
bines more information layers. The printing process uses
the dithering effect [4]. The lines, the text and the edges

within the map image after scanning may be anti-aliased.
Anti-aliasing is a method used in graphics for smoothing the
jagged edges in order to do them pleasing to the human eye.
But from our problem’s point of view, we can say that anti-
aliasing introduces a lot of unwanted colors.

2.1 The color space
The RGB color space is widely used for digital images and it
is compatible with digital displays, but it is not perceptually
uniform. CIE L*a*b* and CIE L*u*v* color spaces were
developed to be perceptual uniform. The differences in color
are represented by the Euclidean metric [5]. The method
described in this paper uses color similarity measurements,
hence, we consider CIE L*u*v* color space [6] for all the
steps used to identify the elevation layers.

Two adjacent colors in the map’s legend may have small
dissimilarities and CIE L*u*v* space is efficient in the mea-
surement of small color differences. The main drawback of
the CIE L*u*v* is that it contains a singularity and the near
values are numerically unstable [5].

2.2 Mean shift filtering
The algorithm used in this work and proposed in [7] employs
a 5-dimensional feature space: the first three dimensions are
the L* u* v* coordinates, and the last 2 dimensions denote
the position of the pixel within the image. The quality of
filtering can be controlled using 2 resolution parameters: hr,
and hs - the radius of the analyzing window in the color do-
main, respectively, in the spatial domain.

The mean shift filtering method searches for the local
maxima of density by moving iteratively a 5D analyzing win-
dow by the mean shift vector, until the magnitude of the shifts
becomes less than a threshold. Local maxima of density are
called modes. The mean shift filtering method ends by re-
placing the value of each pixel with the 3D color component
of the 5D mode it is associated to.

Mean shift filtering reduces the number of colors within
an image and offers a discontinuity preserving smoothing.
We used this type of filtering in order to reduce the dithering
effect within the scanned map.

In our experiments we considered the spatial resolution
hs = 7. For filtering the crop image that contains the legend,
we used a higher value for the color resolution (i.e. hr = 6.5)
in order to eliminate as many as possible from the artifacts
created by the dithering effect. The map test image is filtered
using a smaller value for the hr (i.e. 2) for avoiding the dis-
tortions over the elevation layers (i.e. small area elevation
regions).
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Figure 1: The diagram for the proposed approach for produc-
ing a digital elevation model from a physical scanned map.

2.3 Color clustering using the RLS algorithm

Randomised Local Search (RLS) approach for color cluster-
ing was proposed in [8] and it was designed to be insensitive
to the initialisation.

The RLS method has as input the color image (X), the
number of clusters (M) and the number of iterations (T ). The
initial values for the centroids (C) are generated by taking
randomly values from the image. P is the partition array con-
taining integers pointing from X to C. An optimal partition
(P) is generated by finding the nearest centroid for each el-
ement in X. An iterative process is used to generate global
changes to the clustering structure and to perform local fine-
tuning. It is a three-step procedure: the random swap mod-
ifies the centroid structure by changing one value per itera-
tion, the local repartition operation adjusts the partition array
in respect to the modified set of centroids, and the k-means

enhances the the local refinement. The objective function
(obF) is used to appreciate the quality of the new solution,
which is accepted only if it improves the current solution.

In our work we use the RLS color clustering method for
extracting the colors from the map’s legend. This method is
less sensitive to initialisation than the k-means method. We
run the algorithm using T = 100 and M = [elevColors+1] -
the number of elevation layers denoted by the map’s legend
plus one - the white color, which appears in the legend crop
image after manual border removal step that is done in order
to reduce the distortions.

2.4 Identification of the elevation layers
Our approach for identifying the elevation layers from a
color-coded relief scanned map is described in Figure 1.

The colors extracted from the legend and the preprocesed
map image are converted from RGB into CIE L*u*v* color
space, where Euclidean distance is computed between each
color from the legend and each pixel within the map image. If
h is the height of the map image, and w is the width, the result
will be a h×w×M matrix structure storing the distances
relative to each color from the legend that contains M colors.

The elevation layers are identified by means of a thresh-
old operation over the h×w×M matrix. After the threshold
process, the h×w×M matrix contains only zeros (denot-
ing nonlayer regions) and ones (denoting the elevation layer).
We tried to apply the same threshold value to all the layers.
However, due to small dissimilarities between some colors
of the legend, we used two threshold categories.

Median filtering is applied for removing the isolated val-
ues caused by the dithering effect and generates a h×w×M
matrix denoted T M.

In order to reduce errors we identify the overlaps between
the extracted elevation layers by making the sum of the M
matrices of size h×w contained by T M and finding the val-
ues greater than one.

In the end all the layers are combined together using the
related colors from the map’s legend. Values corresponding
to overlaps are associated to white.

(a)
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Figure 2: The legend. (a) After MEAN SHIFT filtering (spa-
tial resolution hs = 7, color resolution hr = 6.5), manual bor-
der removal and RLS color clustering (T = 100 iterations, M
= 11 centroids); (b) The index of colors in elevation ascend-
ing order.

3. KRIGING BASED GAP FILLING

3.1 The semivariogram
An intrinsic statistical model assumes that there is a station-
ary variance of differences in a random variable between
positions separated by a given distance and a given direc-
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Figure 3: The map image. (a) After MEAN SHIFT filtering
(spatial resolution hs = 7, color resolution hr = 2). (b) The
identified altitude layers - a map image that contains 4 colors
to denote the elevation layers plus white to denote unclassi-
fied pixels.

tion.The semi-variance of difference is called the semivari-
ogram [9], and is defined as follows:

γ(h) =
1
2
·E[(z(x1)− z(x2))2], ||h|| = ||x1 − x2|| (1)

where h is called the lag. Experimental semivariograms are
usually fitted with theoretical models. In our work, we used
a general version of the exponential-Bessel, as a theoretical
model:

γ(h) = C0 · [1− J0(b ·h) · exp(−
(

h
L

)p

)]+ γ0 (2)

As an example, Figure 4 shows the experimental and the
theoretical semivariograms associated with the sparse test
map image.

Semivariograms shows how the averrage difference be-
tween values at pairs of points changes with the distance be-
tween points. Semivariograms are used further for weighting
individual sample points in the neighborhood of the locations
to be estimated.

3.2 The kriging

Kriging was developed by D.G.Krige (1962) and is an opti-
mal method for estimation of the unknown values within an
originally sparsely sampled data assumed to be characterized
by an intrinsic statistical model [9].

The input data, z(xs), exists at sampled locations xs,
where s = 1,2, ...,N. Kriging estimates the value at a spec-
ified location xE where the value z(xE) is unknown using a
weighted sum of the observations:

ẑ(xE) =
N

∑
s=1

λsz(xs),
N

∑
s=1

λs = 1 (3)

where λs is the weight corresponding to the sample located
at xs.

By minimizing the variance of the estimation error, we
obtain the kriging weights and, hence, the kriged estimate,
ẑ(xE). The kriging variance , σ2

E , is expressed as:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

LAG (RELATIVE VALUE)

S
E

M
IV

A
R

IO
G

R
A

M

Figure 4: Semivariogram for the sparse map image (Fig. 3b).
The dots simbolized by ’o’ denote the computed semivari-
ogram. The solid line refers to the theoretical model given
by equation (2) fitted to the experimental semivariogram us-
ing the following parameters: γ0 = 0.0035, C0 = 1.5516,
L = 0.4216, b = 4.4408 ·10−14, and p = 0.8671.

σ
2
E = E[z(xE)− ẑ(xE)]2 =

= 2
N

∑
s=1

λsγ(||xE − xs||)−
N

∑
s=1

N

∑
q=1

λsλqγ(||xs − xq||) (4)

A physical paper map includes non-elevation layers and
after scanning some artifacts may appear near the edges due
to anti-aliasing. These yields gaps (denoted by white colored
pixels) within the resulting image after elevation layers iden-
tification step. In this work, kriging was used to estimate the
value of those unclassified pixels.

First, the colors within the sparse map image are indexed
in elevation ascending order based on the map’s legend.
Then, kriging is applied. The resulting values are rounded to
the nearest integers. After this step, we have a solid-colored
physical map image that contains only elvation data (Figure
6a).

In order to evaluate the results obtained after kriging (i.e.
how well the experimental semivariogram was fitted to the
theoretical one), we used Q1 and Q2 cross validations. Q1
checks the statistics of the mean of the Er (approximately,
follows the normal distribution) [[10]]. Q2 checks the sta-
tistics of the variance of Er (approximately, follows the chi-
square distribution). Er is an array that contains the normal-
ized residuals between the observed data and the kriged val-
ues at the original observation locations (by using the same
semivariogram model parameters and kriging parameters).
Q2 rule is a more strictly validation rule than Q1. Figure 5
shows an example of Q1 and Q2 cross-validations.

3.3 The interpolation
Color-coded contours are extracted from the solid-colored
physical map image by detecting the borders between col-
ors through a sliding-neighborhood operation. Next, using
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Figure 5: Cross-validation results after kriging the map im-
age in Figure 3b using the theoretical semivariogram model
in Figure 4. (a) Q1 cross-validation; (b) Q2 cross-validation.
The computed cross-validation values are located within
the coresponding accepted region, for both cross-validation
methods

the information offered by the map’s legend, the contours
are converted into a sparse altitude data set.

The sparse DEM is interpolated using a Laplacian system
of equation, based on the following relations:

zi, j =
zi, j−1 + zi, j+1 + zi+1, j + zi−1, j

4
, zi, j = ei, j (5)

where zi, j - denotes an altitude sample and ei, j expresses the
known value for an elevation sample.

For solving the system, the LSQR iterative solver - an
algorithm developed by Saunders and Paige [11] - is applied.

More details on contours extraction and interpolation are
included in [12].

Figure 6b shows the 3D representation of the interpolated
DEM obtained for the test map image (Figure 3a).

(a) (b)

Figure 6: (a) The resulting image after kriging and rounding;
(b) The 3D representation of the interpolated DEM.

4. CONCLUSIONS

In this paper, we tried to find a solution for each of the
steps necessary for obtaining a digital elevation model from
a physical paper map. In order to identify the altitude layers,

the scanned map is processed in the CIE-L*u*v* space us-
ing the map’s legend. The method offered good results with
no wrong classified pixels next to white regions. A kriging
based approach is used in order to automate the gap filling
process (a process that estimates a color from the legend for
each unclassified pixel - denoted by white). The estimation
may be difficult for map images that contain a lot of unclas-
sified pixels and we can say that the method worked well for
this kind of situations, too.

The problem is that the whole process is computational
intensive, and processing large maps needs a significant
amount of time. Our future work may be concerned with
development of fast algorithms for processing large map im-
ages.
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