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Abstract— In this paper, we address the problem of adaptive
sensor validation for flight control. The model-based approaches
are developed, where the sensor system is modeled by a Markov
switch dynamic state-space model. To handle the nonlinearity
of the problem, two different particle filters: mixture Kalman
filter (MKF) and stochastic M -algorithm (SMA) are proposed.
Simulation results are presented to compare the effectiveness and
complexity of MKF and SMA methods.

Index Terms—Mixture Kalman Filter (MKF), Stochastic M -
Algorithm (SMA), sensor validation, sensor failure, Fault Detec-
tion and Isolation (FDI), Monte-Carlo technique, particle filter
(PF)

I. INTRODUCTION

Fault detection and isolation (FDI) is an important proce-
dure for safe flight operation and, due to the complicate na-
ture of FDI, much research has been devote to improving its
performance [1][2]. Usually, FDI approaches fall into two ma-
jor categories: the model-based and the knowledge-based. The
knowledge-based approaches use qualitative models based on
the available information and knowledge of the flight system
to be monitored. When the dynamic behavior of systems can
be well-described quantitatively by mathematical models, the
model-based methods are more powerful for FDI. Kalman fil-
ters are commonly used for state estimation in the model-based
methods, when the system is linear, and the noise and distur-
bance are Gaussian [2]. When, in more realistic cases, non-
linear models are used, extended Kalman filters (EKF) [3] are
proposed, where linearization of the nonlinear system model is
required. Although EKF is straightforward to implement, there
is no guarantee that it works well in most cases.

A special topic of FDI for flight control systems is the sensor
validation (SV) and it caught great attentions from researchers
recently, owing mainly to the nonlinear nature of the prob-
lem. To its solutions, model-based approaches have been ar-
guably more favorable and this is especially true for SV with
a stochastic hybrid system that has both continuous and dis-
crete random variables, since only model-based SV methods
are suitable for the solution. In this paper, we focus on the
model-based methods. For model-based methods, when sys-
tems are with an unknown but constant structure, the “nonin-
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teracting” MM (NMM) methods can be used for the optimal
solution [4][5], in which multiple filters run independently in
parallel without mutual interactions. However, for most of the
SV problems, models are interactive and have transitions in be-
tween over time. That is to say the structure of systems changes
and thereby the “noninteracting” MM methods are no longer
suitable. Instead, “interacting” Multiple-model (IMM) was de-
veloped for improved performance [6]. The IMM enables a set
of single-model-based filters interacting between each other in
a remarkably cost-effective way and thus provides significant
improvement over “noninteracting” MM methods [7]. From
signal processing point of view, SV with a hybrid model resem-
bles the problem of symbol decoding over flat-fading channels,
where one can treat the sensor state as unknown “transmitted
symbol” and impute all possibilities of it on the current obser-
vation. Such analogy motivates us to propose a mixture Kalman
filter (MKF) solution in this paper, a unique particle filtering de-
tector developed for the aforementioned problem of symbol de-
coding[8]. As an additional improvement to the MKF, we fur-
ther propose a more efficient particle filtering algorithm known
as the stochastic M -Algorithm (SMA), which was introduced
in [9]. With the SMA, we are able to achieve better performance
than the MKF using much lower computation.

The rest of the paper is organized as follows. In section II,
the problem of sensor failures on an F/A aircraft model is for-
mulated. In section III, we develop an MKF-based solution and
in section IV an SMA solution is discussed. Simulations are
provided in section V to compare the performance and com-
plexity of the MKF and SMA. Concluding remarks is given in
section VI.

II. PROBLEM FORMULATION

We adopt an F/A aircraft model from [7]. Under the normal
(no fault) sensor condition, an aircraft system can be formulated
by a dynamic state-space model (DSSM):

xt = Fxt−1 + Gut + ωt

yt = Hxt + νt. (1)

In (1), xt = [ut wt qt θt]> is a state vector with ut and wt

representing the velocities in forward and vertical directions
of the body axes, qt representing the pitch angular rate, and



θt representing the pitch angle; the input vector ut is a vec-
tor of four different longitudinal control inputs: ut = [δe δsle

δste δast]>; F and G are all known coefficient matrices of the
state equation; yt is the sensor reading; H is the measurement
matrix; ωt and νt are all white Gaussian noise vectors, i.e.,
ωt ∼ N (0, σ2

ωI); νk ∼ N (0, σ2
νI).

To formulate sensor failure, we define a discrete sensor state
variable st ∈ {0, 1, · · · ,M−1}. In particular, when st = 0, the
system is in the normal state (no fault), and when st = i > 0,
the system is in the ith faulty state, which represents that the
ith sensor reading is a fault. Here, we only consider a simple
scenario: one sensor fails at a time. We further assume that the
transitions between states follow a first order Markov chain as
presented in [7]. The resulting formulation is a Markov switch
system described by the following new hybrid state-space equa-
tions

xt = Fxt−1 + Gu + ωt (2)

p(st = n|st−1 = m) = Πmn (3)

yt = Hstxt + νt (4)

where Πmn denotes the (m,n)th element of the transitional
matrix Π and in this model, the measurement matrix Hst is
different for different sensor state. For the normal sensor state,
Hst is an identity matrix, but, for the ith sensor failure, the ele-
ments in the ith row of the measurement matrix Hst are zeros.
Based on the sensor readings up to time t, our objective is to
detect at time t whether there is a faulty reading and then iso-
late the faulty sensor, or in another words, to estimate the sensor
state st. Note the system state vector xt is also unknown.

To form the solution, we adopt the maximum a posteriori
(MAP) criterion, which is expressed as

{ŝt} = arg max
st

p(st|y1:t) (5)

where we use subscript 1:t to denote a collection of variables
from 1 to t. Note p(st|y1:t) is the marginalized a posteriori
probabilities (APP), which is calculated according to

p(st|y1:t) =
∑

s1:t−1

∫

x1:t

p(s1:t,x1:t|y1:t)dx1:t (6)

The difficulty in obtaining the MAP solution is the calculation
of the APP by (6), where the size of the summation increases
exponentially with t, making the problem NP hard.

III. SENSOR VALIDATION WITH MKF

The mixture Kalman filter (MKF), proposed in [10], is an
efficient particle filtering algorithm for the conditional dynamic
linear models (CDLMs) such as equation (4), where, given the
discrete variable st, yt is linear in the continuous state vector
xt. The MKF can be used for online filtering and prediction of
the CDLMs and thereby is suitable for sensor validation.

The MKF is a Rao-Blackwellized particle filter, where sam-
ples are drawn only for sensor state st and a mixture of
Gaussian distribution is used instead of approximating the pos-
terior distribution of xt. Let us start first with the derivation of

the importance function. For the MKF, the optimal importance
function p(st|s(j)

1:t−1,y1:t) is used, which can be obtained by

p(st|s(j)
1:t−1,y1:t)

∝ p(yt|s(j)
t , s(j)

1:t−1,y1:t−1) · p(st|s(j)
1:t−1,y1:t−1)

=
∫

p(yt,xt|st, s
(j)
1:t−1,y1:t−1)dxt · p(st|s(j)

1:t−1)

=
∫

p(yt|xt, st)

·p(xt|st, s
(j)
1:t−1,y1:t−1)dxt · p(st|s(j)

t−1) (7)

where (j) denotes the jth sample trajectory. In (7), p(yt|xt, st)
is the conditional likelihood, which is a Gaussian distribution,
i.e.,

p(yt|xt, st) = N (Hstxt, σ
2
νI).

Furthermore, p(xt|st, s
(j)
1:t−1,y1:t−1) is the predictive density,

which can be obtained from the Kalman filtering as a Gaussian

p(xt|st, s
(j)
1:t−1,y1:t−1) = N (µ(j)

xt|t−1
,C(j)

xt|t−1
) (8)

where

µ(j)
xt|t−1

= Fµxt−1 + Gu (9)

C(j)
xt|t−1

= FCxt−1F
> + σ2

ωI. (10)

and µxt−1 and Cxt−1 are the mean and the variance of the poste-

rior distribution p(xt−1|s(j)
1:t−1,y1:t−1). Consequently, the im-

portance function in (7) can be expressed as

p(st|s(j)
1:t−1,y1:t) ∝ N (µ(j)

yt
(st),C(j)

yt
(st)) ·Πmn(11)

where

µ(j)
yt

(st) = Hstµ
(j)
xt|t−1

(12)

C(j)
yt

(st) = HstC
(j)
xt|t−1

H>
st

+ σ2
νI (13)

Having derived the importance function, we implement the
MKF in the following five major steps:

1) Draw samples;
2) Calculate weights;
3) Calculate the MAP solution;
4) Resample the weight samples;
5) Update state information.

In the first step, we need to draw samples from the importance
function. Notice that the importance function is a discrete dis-
tribution on, say, M possible sensor states and thus sampling
can be easily performed. Next, in the second step, after we ob-
tain the samples, a weight needs to calculate for each sample.
Suppose that for the jth trajectory we have a weight at time t−1
as w

(j)
t−1. The weight w

(j)
t at t can be then computed by

w
(j)
t = u

(j)
t w

(j)
t−1, (14)

where the incremental weight u
(j)
t is defined as

u
(j)
t ∝

M−1∑
st=0

p(yt|st, s
(j)
1:t−1,y1:t−1)p(s(j)

t |s(j)
t−1) (15)



In the third step, once we have the samples and weights, the
MAP solution in (5) can be easily approximated by the state
that has the largest cumulative weights. After these steps, we
might observe a large amount of relatively small weights. Small
weight means that the sample is drawn far from the mean of the
posterior distribution and thus has small contribution to the final
MAP estimation. Therefore, the subsequent MKF implementa-
tion will be inefficient when where is a lot of small weighted
samples and this effect is called sample degeneracy. A useful
method to reduce sample degeneracy is called resampling. In
the fourth step, resampling is performed on the samples and the
weights obtained in Step 1 and 2. However, resampling will be
performed only at the instances when

J̄t ≤ J

10
(16)

where J is the total number of samples, J̄t is the effective sam-

ple size and defined as J̄t
4
= J

1+v2
t

, and vt is a coefficient of
variation and defined as

v2
t =

1
J

J∑

j=1

(
w

(j)
t

ŵt
− 1)2 (17)

with ŵt =
∑J

j=1 w
(j)
t /J .

In the last step, we need to update the state information by
calculating the posterior distribution of xt, to be prepared for
the next MKF iteration at t + 1. This step is exactly like the
one-step filtering update in the Kalman filter and can be more
explicitly expressed by

p(xt|s(j)
1:t ,y1:t) = N (µ(j)

xt
,C(j)

xt
), (18)

where

µ(j)
xt

= µ(j)
xt|t−1

+ K(yt −Hstµ
(j)
xt|t−1

) (19)

C(j)
xt

= (I−KHst)C
(j)
xt|t−1

(20)

K(j) = C(j)
xt|t−1

H>
st

(HstC
(j)
xt|t−1

H>
st

+ σ2
v)−1, (21)

where K is called the Kalman filter gain.
After the above five steps, current iteration is fin-

ished and we obtain the estimated sensor state st,
and the mean and covariance matrix of xt for the
next iteration. The MKF is summarized as follows:

Algorithm: Mixture Kalman Filter (MKF)

• For j = 1 to J ,
1) Predictive step:

Calculate µ
(j)
xt|t−1 from (9) and C(j)

xt|t−1 from (10)
2) Sampling step:

a) For st = 1 to M , calculate

– µ
(j)
yt (st) from (12)

– C(j)
yt (st) from (13)

– Πst−1,st from (3)

– q(s(j)
t |s(j)

1:t−1,y1:t) from (11).

b) Sample n ∈ {0, 1, 2, ..., M − 1} with probability
proportional to q(s(j)

t |s(j)
1:t−1,y1:t) ;

c) Set s
(j)
t = n;

d) Calculate incremental u
(j)
t from (15) and the un-

normalized weight w
(j)
t from (14).

3) Updating step: Calculate
– K(j) from (21);
– µ

(j)
xt from (19);

– C(j)
xt from (20).

• Form the new trajectories {s(j)
t , s(j)

1:t−1}J
j=1;

• Normalize the weight as w̄
(j)
t = w

(j)
t /

∑J
j=1 w

(j)
t .

IV. SENSOR VALIDATION WITH SMA

A more efficient particle filter than the MKF for online
filtering and prediction of the CDLMs is called stochastic
M -algorithm (SMA). The SMA was proposed in [9]. Com-
pared with the MKF, it can provide similar performance but
with much reduced computation. SMA uses discrete Delta
functions as importance functions. Unlike the MKF, which
produces only one sample in each trajectory, the SMA takes
all possible states as samples and then extends each of the
sample into a separate trajectory. One of the key features
of the SMA is that no two trajectories are identical. This
gives SMA more diversities even with less trajectories than
the MKF. The SMA also adopts optimal resampling scheme
[11] to control the exponential expansion of the trajectories.
To guarantee dissimilar trajectories, the optimal resampling
uses sampling without replacement that prevents sample
replication. The SMA for this problem is outlined as below:

Algorithm: Stochastic M -Algorithm (SMA)

• Trajectory expansion
For j = 1 to J

– Perform Predictive step in Algorithm MKF;
– Perform 2).a) in in Algorithm MKF;
– For n = 1:M Set s

(M∗(j−1)+n)
t = n and

calculate the the weight by w̄
(M∗(j−1)+n)
t =

p(s(M∗(j−1)+n)
t |s(j)

1:t−1,y1:t)w
(j)
t−1;

– Form M ∗ J new trajectories by setting
s(M∗(j−1)+n)
t = {s(M∗(j−1)+n)

t , s
(j)
1:t}.

• Normalize the weights w̄
(j)
t ;

• Trajectory selection: Select J trajectories from M ∗ J
trajectories using the optimal resampling algorithm.

• Updating step: For j = 1 to J ;
Performance the Updating step in Algorithm MKF.

V. SIMULATION RESULTS

In the section, we compared the performance of the MKF
and the SMA through computation simulation. The setting
of transition matrix Π and the coefficient matrices F and G



TABLE I. Performance of MKF with different sample size

SNR(dB) -30 -25 -20 -15 -10 -5 0
# of errors (15 samples) 51.23 26.57 18.89 11.53 8.49 6.13 2.27
# of errors (50 samples) 50.8 30.57 20.8 13.94 8.66 4.56 2.07

TABLE II. Performance of SMA and MKF with the same sample size

SNR(dB) -30 -25 -20 -15 -10 -5 0
# of errors (SMA) 29.27 17.33 14.63 10.54 7.06 5.5 1.58
# of errors (MKF) 51.23 26.57 18.89 11.53 8.49 6.13 2.27

can be found in [7]. In addition, we chose constant input
u = [−5.0 0.0 0.0 0.0]>. In Table I, we show the performance
of the MKF at two different sample sizes: 15 samples and 50
samples. The results are in terms of errors per 1000 time stamps
at different SNRs. The signal power was chosen as the small-
est average state power in the the state vector. We notice that
the performance does not change much when sample size is in-
creased from 15 to 50. Therefore, we claim that 15 samples
are good enough to show the performance of the MKF. Next,
in Table II, we compared the performance between the SMA
and the MKF with the same criterion in Table I except that, this
time, we used the same sample size (15 samples) for both the
SMA and the MKF. From the result, we can tell that the over
all performance of SMA is superior to that of the MKF.

To demonstrate ability of the SMA in tracking the failure
variation, we showed in Figure 1 and 2 the real sensor state and
the estimate sensor state, respectively, over 500 time stamps at
SNR = -20dB. The only differences between these two figures
are at the first seven and the 395th time stamps. We can see
that, even if the SMA made a wrong decision at the 395th time
stamp, it can jump back to the right state in the next time stamp.

VI. CONCLUSIONS

We have developed two particle filtering methods to solve
the sensor validation problems in flight control. Both of these
methods can on-line track sensor state efficiently. Between
these two methods, the SMA has less complexity. Also under
the same sample size, the SMA produces less errors than the
MKF.
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