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ABSTRACT

We pose the problem of tissue classification in MRI as a Blind
Source Separation (BSS) problem and solve it by means of Sparse
Component Analysis (SCA). Assuming that most MR images can
be sparsely represented, we consider their optimal sparse represen-
tation. Sparse components define a physically-meaningful feature
space for classification. We demonstrate our approach on simu-
lated and real multi-contrast MRI data. The proposed framework
is general in that it is applicable to other modalities of medical
imaging as well, whenever the linear mixing model is applicable.

1. INTRODUCTION

Tissue classification for diagnosis has been widely addressed from
the viewpoint of machine learning and image processing [1]. Mag-
netic resonance imaging (MRI) is especially useful for this task
owing to its ability to image tissues characterized by their mag-
netic properties (spin-lattice relaxation time T1, spin-spin relax-
ation time T2 and proton density PD). By appropriately choosing
pulse sequence parameters (echo time TE and repetition time TR),
tissue properties can be emphasized, producing a set of images
with different contrast.

Roughly speaking, brain tissues, for example, can be thought
of as consisting of water and fat in different proportions. These
substances have different spin properties, and hence contribute dif-
ferently to the resulting MR image when different contrasts are
used. The underlying physical model in MRI suggests that such
”mixing” is linear. This principle is used in the 2-point Dixon
method [2] for fat suppression. The Dixon method requires the
images to be acquired exactly in-phase and out-of-phase, such that
one component can be removed by simple averaging of the two im-
ages. This exact phase relation cannot always be easily achieved,
e.g. due to inhomogeneities of the field.

In this study, we consider a more general blind source sep-
aration (BSS) framework, which can be used on generic multi-
contrast MR data. We solve this problem by means of Sparse
Component Analysis (SCA). This approach is based on the as-
sumption that typical MR images, like other natural images, can be
sparsely represented by an appropriate transformation. We address
the problem of finding optimal sparse representation for such im-
ages. SCA produces a physically-meaningful feature space, wherein
tissue classification can be carried out using simple linear methods.
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2. THE LINEAR MIXTURE MODEL

Let S1 and S2 denote two Nx × Ny source images, representing
concentration of the basic two components (fat and water) of the
brain tissue. In multi-contrast MRI, we produce a set of M mix-
tures Xi, given by linear combinations

Xm = am1S1 + am2S2, m = 1...M, (1)

and possibly contaminated by noise (accounting also for the pres-
ence of other substances with properties different from those of
water and fat). In matrix form, (1) can be rewritten as

X = A · S, (2)

where A is a M×2 mixing matrix, S is 2×NxNy matrix consist-
ing of source images parsed into row vectors, and X is M×NxNy

matrix of mixtures constructed similarly. The mixing matrix repre-
sents the relative response of water and fat at each contrast. Note
that unlike the Dixon method, here we assume arbitrary chosen
contrasts.

We assume no a priori knowledge of A, except that M ≥ 2
and rank(A) = 2. In addition, we assume without loss of gen-
erality that the sources have zero mean. When M > 2, X is a
redundant representation of S (at least in the zero-noise case) with
M − 2 linearly dependent combinations of S1 and S2. This re-
dundancy can be removed by reducing the dimension of X to 2
for example by using PCA. As a result, one obtains a 2 × NxNy

matrix

Y = Φ ·X = A′ · S, (3)

whose rows are the first two principal components. The matrix Φ
denotes the PCA projection matrix.

3. SPARSE COMPONENT ANALYSIS

Our goal is to estimate the sources S, representing water and fat
concentrations, given Y = A′ ·S, where A′ is a 2×2 unknown in-
vertible matrix. This problem is usually referred to as blind source
separation and is often solved by means of Independent Compo-
nent Analysis (ICA). The assumption of statistical independence
of sources can be relaxed and replaced by the assumption of their
sparseness. This gives rise to the Sparse Component Analysis
(SCA), introduced in [3]. We use the quasi-maximum likelihood
algorithm [4, 5] for SCA.
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Let W be an estimate of (A′)−1. Assuming that S is i.i.d.,
stationary and white, the likelihood of the data Y given W is

p(X|W ) = pS(WX) · |det W |
=

∏
i,j

pS ((WX)ij) · |det W | . (4)

Hence, the normalized minus log-likelihood function is

L(W ; X) =

− log |det W |+ 1

NxNy

∑
i,j

ϕ ((WX)ij) , (5)

where ϕ(s) = − log pS(s). Source images arising in MRI usu-
ally have non-log-concave, multi-modal distributions, which are
difficult to model and are not suitable for optimization. How-
ever, consistent estimator of W can be obtained by minimizing
L(W ; Y ), even when ϕ(s) is not exactly equal to − log pS(s).
We will choose ϕ(s) to be a smooth approximation of the absolute
value, which is a good choice for sparse sources. Although real
MR images are usually far from being sparse, we show in the se-
quel how to transform general classes of images into sparse ones.

There exist various ways for minimizing L(W ; Y ); we use the
fast relative Newton algorithm, proposed in [5]. Once W is found,
the sources are estimated according to

Ŝ = W · Y. (6)

Ŝ are sometimes referred to as sparse components (SCs). It must
be emphasized that the sources can be estimated up to an arbitrary
scaling factor and permutation only. Particularly, this implies that
SCA (like ICA) allows to find only the relative concentration of
water and fat in each pixel of the MR image, and additional priors
must be applied in order to decide which of the two SCs corre-
sponds to fat and which to water.

4. SPARSE REPRESENTATION OF SOURCES

The sparsity prior used in the quasi-ML function (5) is valid for
sparse sources and not valid for original MR images. On the other
hand, it is especially convenient for the underlying optimization
problem due to its convexity. While it is difficult to model actual
distributions of MR images, it is much easier to transform an image
in such a way that it fits the sparsity prior.

Let us assume that there exists a sparsifying transformation
TS , which makes the sources S1, S2 sparse. Our algorithm is then
likely to produce a good estimate of the unmixing matrix W . Not
that the same transformation is applied to each of the sources, i.e.

S′i = TSSi, (7)

using the short notation S′ = TSS to denote sources that under-
went sparsification and arranged in rows of a 2×NxNy matrix.

The problem is that in the blind deconvolution setting, S is
not available, and we can apply TS to the PCs Y only. Hence, it is
necessary that the sparsifying transformation commute with ΦA,
i.e.

ΦA(TSS) = TS(ΦAS) = TSY, (8)

such that applying TS to Y is equivalent to applying it to S. Obvi-
ously, TS must be linear in order to satisfy (8).

Thus, we obtain a general BSS algorithm, which is not limited
to sparse sources. We first sparsify the PCs Y using TS , and then
apply the SCA algorithm on Y ′. The obtained unmixing matrix
W is then applied to Y to produce the source estimates.

4.1. Optimal sparse representation

In [6] wavelet packet transform was proposed as a candidate for
TS using empirical considerations. Such sparsification is usually
not optimal. For best performance of the algorithm, it is required
that TS be the best sparsifying transformation possible. We show
a way to find such a transformation. For simplicity we limit our
attention to linear shift-invariant (LSI) transformations, i.e. TS

that can be represented by convolution with a sparsifying kernel
TSSi = T ∗ Si.

The sum of absolute values in the prior term in the quasi-ML
function can be used as the objective to find a kernel T which will
yield the sparsest image, i.e.

min
T

2∑
i=1

∑
mn

|(T ∗ Si)mn| s.t. ‖T‖22 = 1, (9)

where the constant energy constraint is posed on T to avoid the
trivial (zero kernel) solution. Since in practice Si are not known,
problem (9) can be solved using some similar images instead of
the actual sources [7, 8, 9].

5. GEOMETRIC BLIND SOURCE SEPARATION

Another remarkable property of sparse components approach is
that it allows performing very simple geometric BSS. Since most
pixels in the source images have a near-zero magnitude and the
locations of the non-zero values in the sources are usually inde-
pendent1, there is a high probability that only a single source will
contribute to a given pixel in each mixture [3, 10]. Consequently,
the majority of the non-zero-valued pixels in each mixture will be
influenced by one source only and have a magnitude equal to that
of the source multiplied by the corresponding coefficient of the
mixing matrix.

In the scatter plot of one mixture versus the other these pix-
els will therefore be clustered along lines (each corresponding to
a source) at a distance from the center depending on source mag-
nitude. Hence, it is possible to reveal the ratios of each source’s
contribution to the mixtures by measuring the angles of each of
the lines. Figure 2 depicts scatter plots of the mixtures. The ori-
entations corresponding to the columns of the mixing matrix are
clearly visible, so that one can measure the obtained angles and
thereby restore the matrix entries. [11].

6. SIMULATION RESULTS

The performance of the proposed methods was assessed using sim-
ulated brain MRI data, obtained from the BrainWeb database [12].
Four 1 mm thick slices were acquired using the spin echo proto-
col with TR = 2500 msec and different values of TE , thus giving
different weights to the underlying substances (Figure 1). Skull
bones were manually removed from the images.

According to our underlying assumption, the four observed
images X1, ..., X4 are linear mixtures of independent sources which,

1Note that strict statistical independence is not required here.



in our case, can be roughly divided into ”water” and ”fat”. We have
therefore attempted to extract these sources from the four mixtures
using SCA. After subtracting the mean value, each of the mixtures
was sparsified by convolution with a 2×2 corner-detection kernel,

T =

(
+1 −1
−1 +1

)
, (10)

which is obtained by solving (9) and yields the best performance
for sources containing sharp edges and corners. Scatter plots of the
sparsified mixtures (Figure 2) reveal two clearly visible indepen-
dent sources in the data. PCA was used to project the four spar-
sified mixtures onto a two-dimensional space; SCA algorithm was
then applied to the two principal components in order to estimate
the two sources (see Figure 3, first row).

The obtained sources have obvious physical meaning: Ŝ1 is
proportional to the amount of water found in each voxel, whereas
Ŝ2 is proportional to the amount of fat. We normalize Ŝ1, Ŝ2 to
the interval [0, 1] and perform classification by hard thresholding:
pixels where cerebral spinal fluid (CSF) is present usually have
large concentration of water, therefore, we classify all pixels for
which Ŝ1 > 0.5 as CSF. Similarly, pixels with Ŝ1 ∈ [0.05, 0.5],
Ŝ2 ∈ [0.05, 0.5] are classified as gray matter, and Ŝ1 ∈ [0.05, 0.5],
Ŝ2 > 0.5 as white matter (Figure 4). The low threshold 0.05 is
used to distinguish the tissues from the dark background. Figure 3
(second row) depicts the resulting tissue segmentation compared
to the ground truth.

A similar experiment was repeated with three registered T1,
T2 and PD weighted scans of a human normal brain (Figure 5), ac-
quired using the spin echo sequence with TR/TE = 700/20msec,
TR/TE = 2200/30msec, and TR/TE = 2200/80msec, re-
spectively 2. The estimated sources corresponding to “water” and
“fat” are depicted in Figure 6 (left and middle, respectively). In-
stead of hard-threshold segmentation, fuzzy segmentation was ap-
plied in this experiment. Each pixel was assigned three values
ρW , ρG, ρC , ranging from 0 to 1 and corresponding to the possi-
bility to find white matter, gray matter and CSF, respectively, in
that pixel. These values were computed by applying sigmoid-like
functions to the relative concentration of “fat” in the pixel,

ρF =
Ŝ2

Ŝ1 + Ŝ2

. (11)

Figure 6 (right) depicts the results obtained by fuzzy segmenta-
tion of brain tissues using pseudo-colors, where R,G,B represent
ρW , ρG, ρC , respectively.

7. CONCLUSIONS

The fact that multi-contrast MR images can be considered as weighted
linear mixtures of physically-meaningful source components lends
itself to the BBS framework and, in turn, to the application of SCA
as a tool for extraction of these components. Since the latter re-
quires knowledge of source distributions, which are generally hard
to model, we used a simple sparsity-based prior in combination
with a sparsifying transformation.

Surprisingly, as we found, the optimal LSI sparsfying transfor-
mation for brain MR images is a simple corner detector. The lat-
ter performs better than non-optimal, though more general, sparse

2MR brain data set 657 was provided by the Center for Morpho-
metric Analysis at Massachusetts General Hospital and is available at
http://www.cma.mgh.harvard.edu/ibsr.

TR/TE = 2500/25 msec TR/TE = 2500/50 msec

TR/TE = 2500/75 msec TR/TE = 2500/100 msec

Fig. 1. Simulated MRI brain data.
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Fig. 2. Scatter plots of the normalized sparsified mixtures.

representations (e.g. wavelet packets [10]), derived from empirical
considerations and used in previous studies. Further generalization
of this result to a wider class of non-LSI transformations will be
presented elsewhere. In addition, since our approach is not limited
to MRI, we search for optimal sparsifying transformations suitable
for other classes of medical images.

SCA produces a feature space which is useful in classifica-
tion. In this study we used linear hard-threshold and fuzzy soft-
threshold classification as an example; other classifiers can be used
instead if necessary. In the case of MR images, two sparse com-
ponents sufficed for accurate classification. In the general case
of classification, feature spaces of higher dimensions may be re-
quired.
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Fig. 4. Feature space spanned by Ŝ1, Ŝ2. Points represent pixels
in the images, projected onto the estimated sources. Ground truth
is shown by red (white matter), green (gray matter) and blue (gray
matter).

Fig. 5. Real MRI brain data. Left to right: T1, T2 and PD-weighted
images.

Fig. 6. Estimated sources in real brain data: “water” (left) and
“fat” (middle). Right: fuzzy segmentation of brain tissues to white
matter (red), gray matter (green) and cerebral spinal fluid (blue),
presented in pseudo-color.
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