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ABSTRACT

In most approximation techniques for implementing a vari-
able fractional delay, like Lagrange interpolation, the magni-
tude response varies considerably with the delay. Instead,
it would be desirable to keep the magnitude response the
same for all delay values. In this paper, we propose a novel
method for optimizing the parameters of the least-squared
error spline transition band fractional delay FIR design to
achieve good delay approximation with delay-independent
magnitude response.

1. INTRODUCTION

In many applications, a variable fractional-delay (FD) filter is
needed [1]. Typically the magnitude response of FIR FD fil-
ters also varies with the chosen delay value, which is usually
undesirable. One alternative is to use allpass IIR FD filters
that have unity magnitude response at all frequencies, but
unfortunately they suffer from transient effects whenever the
delay value is adjusted on-line [6]. For FIR filters, instead,
the simple Lagrange interpolator has excellent approxima-
tion at low frequencies for both the magnitude and delay, but
the magnitude response outside the passband varies strongly
with the delay value. Even if this would not affect the sig-
nal being delayed, it might cause harmful variations in the
system noise characteristics.

The least-squared error (LSE) spline transition-band FD
filter [2], [3], instead, has been observed to have a magnitude
response that remains almost unchanged over different frac-
tional delays [1], [4], (Fig. 1). The cost is a slightly more
narrow passband. The choice of the design parameters (filter
length N, spline order P, and passband and stopband edge
frequencies) were discussed in detail in [2] for conventional
linear-phase lowpass FIR filter design. However, the design
of FD filters has important differences. Usually, no explicit
stopband region is needed. Furthermore, the filter length is
typically rather small (ca. 4-20) and being the key design pa-
rameter it is fixed first, whereas the passband edge frequency
is not so critical and can be chosen as resources permit. Last
but not least, the (phase) delay response should also meet re-
quirements, which is of course not an issue with linear-phase
FIR design.

In this paper, we derive design equations for the least-
squared error spline transition-band FIR FD filter that at-
tains both good FD phase approximation and nearly fixed
magnitude response over all the fractional delay values D €
[-0.5,0.5). In Section II, we introduce the LSE spline FIR
FD design equations. In Section III, the optimization of the
passband edge frequency parameter is addressed. The choice
of the spline parameter is then discussed in Section IV. In

Section V, the results of Sections III and IV are generalized
for both odd and even-order filters, and Section VI gives an
example case of how the results of this paper can be used in a
practical situation. Finally, Section VII concludes the paper.

2. DESIGN EQUATIONS

The magnitude response of the LSE spline transition band
FIR filter is defined by [2]
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where 4jq( ) is even and periodic with period 2 , is the
normalized angular frequency, the design parameters , and
s indicate the passband and the stopband of the filter, and P
is the order of the spline.
The impulse response of an ideal FD filter with delay
D is obtained by the inverse discrete Fourier transform of
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where n € (— , ). In the following, we will set = ,
i.e., no stopband is needed. The LSE approximation of the
infinitely-long ap(n) can be achieved by simply truncating
it in the range —L < n < L, and the frequency response of
the truncated odd-length non-causal FIR filter with delay D
is obtained as

n=L
Hp( )= l[ap(n)e™ "], De€[-0.5,0.5) (3)
n=—L

If we define the amplitude response of the truncated filter
with D = 0 as the desired zero-phase amplitude response,
the ideal frequency response for a finite-length FD filter with
delay D is

Hap( )=A4o( )-e/ P “4)

Note that Ag( ) is the real-valued magnitude response of
Hp( )|p_o and differs from Eq. (1) due to truncation errors.



The truncation in Eq. (3) can be interpreted as convolu-
tion in the frequency domain [5]:
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where ® denotes convolution and () is the frequency re-
sponse of an odd-length rectangular truncation window [3]:
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of Eq. (7) can be seen to approximate 4o( ) in Eq. (4).
The difference between Ag( ) and Kp( ) causes variation
of magnitude and phase response between the chosen delay
values. Let us define the complex-valued error as:

E( ,D)=A4o( )—Kp( )
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which is the deviation of Hp( ) from the desired zero-phase
response Ao( ). The absolute value of E( ,D) is a measure
of deviation between the resulting magnitude response and
the desired one, while the imaginary part of E( ,D) should
be set to zero to avoid phase delay error. As a matter of
fact, E( ,D) varies with both  and D, and we use the peak
passband error magnitude as an overall design criterion to
simplify the problem:
C=max{|E( ,D)|, €(0, ,),D€(-0.5,0.5)} (11)
Our objective is to minimize C in the desired frequency range
€ (0, ), which means making Kp( ) as close to Ag( )
as possible and minimizing the variation of magnitude and
phase response with the chosen delay values. As can be seen
from Figs. 2 and 3, C varies substantially with respect to
p and P, and there seem to be obtimal choices for these
parameters that minimize C. In the following two sections,
we propose methods to find the best values for the parameters
pand P.

3. OPTIMAL CHOICE FOR »

The integral in Eq. (6) is so complex that it is difficult to ob-
tain an explicit design equation for the chosen optimization
parameters. However, we can find an approximate solution
by employing the properties of 4iq( ) and W( ) from equa-
tions (1) and (8), respectively.

A key point in the optimization is that ideally the imagi-
nary part of £( ,D), whichis equalto —Kp m( ), should be
zero, but due to the FD approximation (truncation) a nonzero
imaginary component is introduced. We now proceed to
characterize an approximate solution by setting the imagi-
nary part Kpm( ) to zero for D = 0.5, which usually has
the largest group delay error:
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Figure 1: (a) Magnitude and (b) Phase Delay response of 7-
tap FD filters, using optimal ,=0.14 ,and P =2 withD =
0,0.1,0.2,0.3,0.4,0.5. Compare with the non-optimized de-
sign shown in Fig. 5.
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Note that sin[(L+)) | in Eq. (12) is an odd func-
tion, and the integral of such an odd function in the range
€(— , )isequaltoO. Itis possible to separate Aig( — )
into two parts, one a symmetric function of , another an
anti-symmetric function of . To do this, we define an auxil-
iary even periodic function F( ) = F(— ), where

(12)
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whose period is 2 . We can replace 4j4( — ) in Eq. (12)

by {F( )+ [4id(
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Because the product of F( ) and sin[(L+1)- ] is anti-
symmetric, the first integral is zero. Furthermore, the second
integral in Eq. (14) is a periodic convolution so that the in-
tegration range can be shifted by any amount, e.g., . The
problem now reduces to minimizing the integral

K(O.S)Jm( )
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in which for any and P, [4i¢( — )—F( )] is non-zero
only intherange € ( ,— , + )and symmetric with
respectto o=[( ,— )+( — )I/2=( p+ ).

The integral of an anti-symmetric function in a symmet-
ric range is equal to zero and thus we can set the integral
in Eq. (14) to zero by forcing sin [(L+))- | to be anti-
symmetric with respect to . This is equivalent to requiring
that

— )—=F( )]} and rewrite it as

(L+;>~< ”; ):K ,Ke0,1,2,---  (16)
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Figure 2: Peak passband error Cvs , withP=3,L =3
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which means that for these values of , the integral in
Eq. (12) reduces to zero. Now, let us define the maximum
imaginary error as

Mim( ) = max{[Kgs)m( )}, €0, ) (18)

Fig. 2 shows Mim( ) with respect to , (dotted line). It
demonstrates the desired result that for the proposed choices
of 5, the peak value of K s5)m( ) is zero in the whole
passband. It is also seen that the obtained suboptimum so-
lution can be expected to be quite close to the true optimum
when the most narrowband solution for , is chosen.

4. OPTIMAL CHOICE FOR SPLINE ORDER P

In [2], Burrus et al. suggested a choice for the spline order P
resulting in the minimum least-squared error as

C(N=1)/(4) (19)

where = ,— is the transition band. Because we have
no stopband ( ¢ = ), the expression can be elaborated for
the integer valued P as

P =round[( — ,)-(N—1)/(4 )]
~ round[(N — 1) /4] = round(L/2) (20)

The approximation holds for a relatively narrow passband,
which usually is the case in FD filter design. Furthermore,
as the typical spline orders are below 5, the quantization to
integer orders means that the formula is quite accurate for
practical purposes. This has also been observed experimen-
tally, as shown in Fig. 3.

Popt:

5. GENERALIZATIONS

In the two previous sections, all the optimization was done
for the specific case where N is odd and D = 0.5. The method
can, however, be generalized for even N and other values of
D. For D # 0.5, we have Eq. (12) in the form

Kp,im( ):21 [ Aig( = )-W( )-sin(D )d

L=3,N=7

Peak Error

Figure 3: Peak passband error C vs spline order P for odd
filter lengths N =7,9,--- ,17.
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which replaces the constant-amplitude sinusoid function

sin[(L+}) ] in Eq. (12) by an amplitude-variant function
sin [(L +;) ] Sifll[?g?z)) ] which has similar properties, so that
Eq. (16) is still a good choice for ,. We have found exper-

imentally that Eq. (20) for P is also a good choice in this
case.

07

0.6

P

0.5

0.4

Optimal

0.3

0.2

EEEE

Half Filter Length: L

TTIIT

10 11 12

Figure 4: Relationship between L and optimal

Using the values of , and P as defined by equations
(17) and (20), an example of the resulting filter magnitude
and phase delay responses is shown in Fig. 1 for different
values of D. In Fig. 1, the filter’s magnitude response for 5
different fractional delays D remains almost fixed, and also
the phase delay is close to the chosen fractional delay (plus
an intrinsic integer delay of the FIR filter). The result is seen
to be much better than that of a non-optimized 7-tap filter
in Fig. 5, where the magnitude responses are obviously dif-
ferent from each other and the phase response curves suf-
fer from severe ripples. In Fig. 1 the magnitude response
has only 1% maximum error for D = 0.5 in comparison to
D=0 (L=3). A disadvantage of the method is that in Eq.
(17) the optimal value for , has a trend of getting smaller
when L increases, as shown in Fig. 4. Hence, the method
is best suited for relatively short filters (L < 10 or N < 21),
which is sufficient for most FD applications.
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Figure 5: (a) Magnitude and (b) Phase Delay response of
non-optimized 7-tap FD filters, using , =0.4 and P =3
with D = 0,0.1,0.2,0.3,0.4,0.5. Compare with the opti-
mized design shown in Fig. 1.

Similar derivations for even N yield expressions for P and

p» that are the same as those for odd N. For the convenience

of the reader, a complete set of design formulas is given in
Table 1.

6. DESIGN EXAMPLE

The remarkable improvement that the proposed parameter
choices introduce were already illustrated in figures 1 and 5
for an odd filter length (N=7). Let us then consider an even-
length filter (N=10). Fig. 6 shows the magnitude and phase
delay responses of FD filters with optimal parameter choices
»=0.33 and P =2. The design results show that the mag-
nitude response is almost constant for different values of D.
There are 5 magnitude response plots (for different D) in the
figure, but they are seen to be almost exactly the same. Fig. 7
illustrates the responses for non-optimal choices , = 0.30
and P = 6, which demonstrates slightly worse magnitude be-
haviour but much deteriorated phase delay approximation.

7. CONCLUSION

We have proposed a method for designing FD filters with flat
phase delay response and small magnitude variation. The
imaginary and real parts of the error were analyzed and then
minimized separately by optimally setting the design para-
meters. The optimal design parameters are expressed in an
explicit form which only depends on the filter length. The
formulas enable the design of variable FD filters which have
practically constant magnitude response independent of the
variable delay value.

Table 1: Summary of Design Formulas
N N=2L+1(0dd) N =2L+2(Even)
2K 2K

p Pyl T

2 Pkl
P Py =round(L/2)

Py =round(L/2)

Restrictions , € (0, ),2K<L+2andK =0,1,2,3...
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Figure 6: (a) Magnitude and (b) Phase Delay Response of
10-tap FD filters, using optimized , =0.3 and P =6
with D = 0,0.1,0.2,0.3,0.4,0.5. Compare with the non-

optimazed design shown in Fig. 7.
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Figure 7: (a) Magnitude and (b) Phase Delay Response of
non-optimized 10-tap FD filters, using ,=0.33 and P=2
with D = 0,0.1,0.2,0.3,0.4,0.5. Compare with the opti-
mazed design shown in Fig. 6.
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