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ABSTRACT

In this paper, we propose a semi-blind video watermarking
scheme for the verification problem, where mark embedding is car-
ried out by designing a complexity-adaptive watermark signal via
solving a constrained optimization problem. By adding the resulting
watermark to the unmarked host, we effectively quantize pseudo-
random linear statistics of the host in the wavelet domain using a
secret codebook. We introduce a stochastic video model and ex-
ploit it during the design. In particular, we use the proposed model
to generate a “complexity map”, which is then employed in solv-
ing the underlying optimization problem to “regularize” the water-
mark. Consequently, the resulting watermark is locally adapted to
the statistical complexity of the signal at a coefficient level. Regu-
larization is achieved by solving the underlying optimization prob-
lem using an iterative algorithm. We experimentally validate the
complexity-adaptive structure of the resulting scheme, while main-
taining robustness against numerous attacks, such as low bit rate
video compression, mild geometric modifications, etc. This paper
can be viewed as a continuation of our previous work [1].

1. INTRODUCTION

We consider the watermark (WM) verification problem for video,
where the receiver acts as a detector and makes a binary decision
regarding the existence of the WM in the received signal. Note
that, the verification problem is different from the decoding prob-
lem, where the receiver assumes that WM has been embedded in
the received signal and the aim is to reliably extract the embedded
bits. Most of the prior art on video watermarking can be consid-
ered as applications of existing image watermarking schemes, see
for example [2, 3]; in such approaches, image watermarking is ap-
plied to some appropriately-selected video frames and the emphasis
is on the compatibility with existing video compression standards.
On the other hand, these methods may lead to serious security prob-
lems due to the strong temporal redundancy in video (for instance,
in case of estimation attacks). We advocate a different approach,
where video is treated as a 3D signal (with heavy temporal correla-
tions) and the watermarking algorithm is designed accordingly.

This paper is a continuation and an improved version of our
earlier work [1]. Both are built on the general framework intro-
duced in [4], such that several significant aspects related to video
are taken into consideration. We propose to embed the WM af-
ter applying 2D-DWT (discrete wavelet transform) to each video
frame. In particular, we use pseudo-random (PR) linear statistics
of PR (possibly overlapping) connected 3D regions in the DC sub-
band for WM embedding and detection. For mark embedding, we
quantize these statistics and subsequently compute an additive WM
via solving a PR optimization problem, such that the statistics of the
marked signal are equal to the quantized statistics of the (unmarked)
host signal. We assume the presence of unmarked host statistics at
the receiver, and accordingly use the correlation detector to verify
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the presence of the WM (if any). Some similarities may be ob-
served between our approach and “spread-transform” (ST) [5, 6]
or “quantization-projection” (QP) [7] methods. However, there are
major fundamental differences: Our statistics are produced by non-
disjoint sets of host coefficients (i.e., overlapping semi-global con-
nected regions) that have geometric meanings (as opposed to the
usage of disjoint sets in ST or QP methods that are not necessarily
meaningful geometrically). Consequently, we increase the dimen-
sion in which WM is computed, which helps us to avoid estimation
attacks and to improve robustness in general.

Although this paper and the method of [1] share the same under-
lying philosophy of embedding the WM in the PR linear statistics
domain, they differ in the WM design. In particular, in our cur-
rent work, we introduce a “signal-adaptive” design, such that the
resulting WM has higher (resp. lower) energy in more (resp. less)
complex regions of the host 1. The rationale is due to the empirical
realization of the fact that a typical video host is a highly hetero-
geneous medium and the designed WM should ideally follow the
host behavior (both for perceptual and security reasons). In gen-
eral, we would like to embed stronger (resp. weaker) WM for more
(resp. less) detailed regions; if this is not satisfied, WM could create
perceptual artifacts and it may even be possible for an intelligent
attacker to produce reasonably accurate estimates of the WM (or
the unmarked host) by using signal-estimation or source-separation
methods. In practice, there can be both high-texture regions and
very smooth regions within the same frame and we need to take
this into account in the WM design. This task becomes more com-
plicated when we consider temporal correlations; such correlations
can last long depending on the video content.

Based on these observations, we realize that there are two chal-
lenges: (i) We need a practical method to assess the proper WM
strength locally in an input-adaptive fashion (adapted to the signal
complexity) (ii) We need to incorporate the aforementioned assess-
ment in the WM design accordingly, thereby resulting in stronger
(resp. weaker) WM in more (resp. less) desirable regions. To
achieve these tasks, we extend the system proposed in [1] as fol-
lows: We propose a novel stochastic model for video and utilize it
to impose complexity constraints on the WM design; as a result, the
WM magnitude is adjusted to the signal complexity at a coefficient
level. Hence, our approach yields “complexity-regularized” WM
design. Note that, although this paper concentrates on the verifica-
tion problem, a variant of our design can be used for the decoding
problem as well.

The rest of the paper is organized as follows: In Sec. 2, we
introduce the notation and necessary background. In Sec. 3, we
introduce the proposed video model and show how it can be used to
compute per-pixel complexity measures in the DC subband of the
wavelet domain. In Sec. 4, we explain how the proposed complexity
measures are used in the WM design within the framework of [1].
In sec. 5, we discuss the experimental results and conclusions.

1An analogous result of “stronger WMs for higher entropy channels” has
previously been obtained in [8] for the game-theoretically optimal power
allocation problem for information hiding in parallel Gaussian channels.



2. BACKGROUND AND NOTATION

Boldface lowercase letters and corresponding regular letters with
subscripts represent vectors and their individiual elements, respec-
tively; for instance, ai is the i-th element of the vector a. Let s∈ R

n

denote the length-n unmarked host. Note that, here s is a vector
representation of the concatenation of the DC subbands of all the
video frames in the 2D-DWT domain. Similarly, let x,y ∈ R

n de-
note the watermarked and attacked signals, respectively. Here, x
should be perceptually approximately the same as s. The goal of
the malicious attacker is to cause errors in detection, via feeding the
attacked data y (which should have perceptually acceptable quality)
to the receiver; note that, y may have been produced from some un-
marked data s or its marked version x. If y has been generated from
s (resp. x), the attacker aims to increase the probability of receiver’s
declaring the presence of the WM, denoted by PF (resp. the prob-
ability of receiver’s declaring the absence of the WM, denoted by
PM)2. Naturally, the receiver’s goal is to achieve otherwise. In this
work, we consider a symmetric private-key setup; i.e., there exists
a secret key that is shared by the embedder and the receiver, which
is unknown to the malicious attacker. It should be understood that
in all the randomized steps of the proposed scheme, a secure PR
number generator has been used with the secret key as the seed.

Most watermarking techniques consider either a “blind” or
“non-blind” setup, where the former (resp. the latter) assumes that
the receiver has (resp. does not have) access to unmarked host s.
Here, we consider an alternative “semi-blind” setup, where the re-
ceiver does not have access to s, but rather has access to some side
information that is correlated with s and is a function of the secret
key. Thus, by construction, our approach is well-suited for finger-
printing applications. This setup was also considered in [1]; sim-
ilarly, a hash-aided image watermarking scheme was proposed in
[9].

Next, we briefly explain the basics of our “watermarking via
statistics quantization” approach, which forms the skeleton of the
scheme proposed in this paper. For further details, we refer the
interested reader to [1, 4].

2.1 Watermark Embedding and Detection
We embed the WM by effectively changing the statistics of (pos-
sibly overlapping) 3D connected regions with PR locations. Cur-
rently, we confine ourselves to rectangular prisms; however, our
approach allows the usage of regions with arbitrary shapes. We first
generate sizes and locations of m rectangular prisms; the i-th prism
is represented by the set Ri ⊂{1,2, . . . ,n}, which defines the indices
of the coefficients that belong to it, 1 ≤ i ≤ m. The i-th unmarked
statistic µi of s is given by the linear weighted combination of {s j}
with smooth PR jointly-Gaussian weights, that are bandlimited to ft
radians by construction (here {s j} are in the region Ri). We repre-
sent the weights for Ri with ti ∈ R

n, where t i
j = 0 if j /∈ Ri. Hence,

we write µi = ∑n
j=1 s jt i

j =< s,ti >, which leads to µ = Ts, where
µ ∈ R

m is the unmarked statistics vector, and T ∈ R
m×n is formed

such that its i-th row is ti.
We design the additive WM sequence w ∈ R

n, such that the
watermarked signal x = s+w has statistics µ̂ ∈ R

m, that are the
quantized version of µ . Currently, we use a scalar uniform quan-
tizer with step size δ ; however, in general any high-dimensional
quantizer that maps µ to µ̂ can be used. We compute w such that
T(s+w) = µ̂ and ||w|| = ||x−s|| is minimized; i.e., we solve

min
w

||w|| s.t. Tx = µ̂ ⇔ Tw = µ̂ −µ. (1)

Assuming that T is full-rank (which is almost always satisfied in
practice with our parameter selection), the solution to (1) is given
by the well-known minimum-norm result:

wMN = TT
(

TTT
)−1

(µ̂ −µ) . (2)

2PF and PM are conventionally used for probabilities of false alarm and
miss in detection theory.
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Figure 1: Sample distribution(solid) normalized according to the
proposed spatial dependency and theoretical Gaussian distribu-
tion(dotted) for 10000 randomly selected samples in DWT DC sub-
band for M = 5. Kurtosis of the distribution is 2.9093

The vector µ is sent as side information to the receiver per our semi-
blind assumption. Having the input y, the receiver makes a binary
decision regarding the existence of the WM using the statistics of
y (represented by µ̃ = Ty) in a correlation detector. The normal-
ized correlation value is given by γ = <µ̃−µ ,µ̂−µ>

||µ̂−µ ||2 . Having chosen
a threshold τ (0 < τ < 1), the detector declares the presence (resp.
the absence) of the WM if γ > τ (resp. γ < τ).

Note that, the solution (2) yields optimal w in the sense of l2

norm in the presence of the constraint of Tx = µ̂ . However, this
does not necessarily yield the best solution in the sense of percep-
tual quality and security. It is possible to solve (1) in the presence
of other meaningful constraints. In particular, in Sec. 4, we propose
an iterative algorithm, such that w is designed to achieve Tx = µ̂ ,
while being sufficiently smooth and locally-adapted to the signal
complexity; this forms the crux of our work. In practice, signal
complexity is computed at a coefficient level by imposing a statisti-
cal model on the video, which is the topic of the next section.

3. PROPOSED STATISTICAL MODEL FOR VIDEO

3.1 Spatial dependencies
In order to capture spatial correlations within each frame, we em-
ploy the statistical image model (also known as the EQ model) ini-
tially proposed in [10] for compression, subsequently used in [11]
and [8] for denoising and information-hiding-capacity computation,
respectively. Specifically, we assume a locally approximately i.i.d.
(independent identically distributed) Gaussian model for each coef-
ficient; in practice, we find approximate ML (maximum-likelihood)
estimates of the mean and variance of each coefficient relying on the
i.i.d. approximation within a window of size M ×M. In fig. 1, we
show the histogram of randomly selected 10000 coefficients (nor-
malized by their estimated means and variances) in the DC subband
of a typical video. The figure shows that we have a Gaussian-like
operational distribution, thereby empirically justifying our model-
ing assumptions; the corresponding sample kurtosis is 2.9093 which
is close to the ideal value of 3.00 for Gaussian distribution.

Let Cs
(

lx, ly, lt
)

denote the spatial complexity (i.e., a mea-
sure of spatial details) of the DC-subband wavelet coefficient
c
(

lx, ly, lt
)

in frame lt with spatial coordinates
(

lx, ly
)

. Moti-
vated by the standard information-theoretic entropy-rate expres-
sion for Gaussian sequences[12], we propose to use Cs

(

lx, ly, lt
)

=
1
2 log

[

2πeσ̂2
s

(

lx, ly, lt
)]

, where σ̂2
s

(

lx, ly, lt
)

is the approximate ML
estimate of the variance of c

(

lx, ly, lt
)

using the EQ model within
each frame (in practice, we use M = 5 for estimation); for fur-
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Figure 2: Sample distribution(solid) normalized according to the
proposed temporal dependency and theoretical Gaussian distribu-
tion(dotted) for 10000 randomly selected samples in DWT DC sub-
band for N = 13. Kurtosis of the distribution is 3.1074

ther details on the estimation of the underlying variance field, see
[10, 11, 8].

3.2 Temporal dependencies
Suppose, we have a method that gives us accurate per-pixel motion
vectors. Generally, optical flow or block matching techniques are
used to achieve this task; in practice, we use the method described
in [13] to obtain the motion vector field. Let MV

(

lx, ly, lt ,∆
)

denote the 2-dimensional motion vector (with horizontal and ver-
tical components MVx (·, ·, ·, ·) and MVy (·, ·, ·, ·) respectively), that
maps c

(

lx, ly, lt
)

to the corresponding pixel in the lt + ∆’th frame.
Thus, if the motion field is accurate, we should have c

(

lx, ly, lt
)

≈

c
(

lx +MVx
(

lx, ly, lt ,∆
)

, ly +MVy
(

lx, ly, lt ,∆
)

, lt +∆
)

.
Given the DC subband coefficients

{

c
(

lx, ly, lt
)}

and the cor-
responding motion vectors

{

MV
(

lx, ly, lt
)}

, we assume a locally-
stationary first-order Gaussian AR (auto regressive) process along
the direction of the motion field:

c
(

lx, ly, lt
)

= ρ
(

lx, ly, lt
)

·c
(

lx +MVx, ly +MVy, lt −1
)

+g
(

lx, ly, lt
)

,

where we dropped the parameters of MVx and MVy for conve-
nience. Here, {g

(

lx, ly, lt
)

} are locally i.i.d. and distributed with
N

(

0,σ2
t

(

lx, ly, lt
))

. In practice, we apply the locally-stationarity
assumption within a temporal window of length-N, where N =
13. For each coefficient, we first find the least-squares (LS) es-
timate ρ̂

(

lx, ly, lt
)

of the correlation coefficient ρ
(

lx, ly, lt
)

using
the temporal neighbors. Then, we find an approximate ML esti-
mate σ̂2

t
(

lx, ly, lt
)

of σ2
t

(

lx, ly, lt
)

, after approximate whitening us-
ing ρ̂

(

lx, ly, lt
)

. In fig. 2, we show the histogram of randomly se-
lected 10000

{

g
(

lx, ly, lt
)}

samples, normalized by their estimated
variances. The figure experimentally verifies our Gaussian approxi-
mation; the corresponding sample kurtosis is 3.1074 (close to the
ideal value of 3.00). Relying on a similar rationale of sec. 3.1,
we use Ct

(

lx, ly, lt
)

= 1
2 log

[

2πeσ̂2
t

(

lx, ly, lt
)]

as the temporal com-
plexity measure.

4. COMPLEXITY-REGULARIZED WATERMARK
DESIGN

Once the minimum norm solution wMN is found by (2), we apply
the following iterative algorithm to find the final WM:
Set w0 = wMN = TT(TTT)−1d. For K steps, do

1. w1 = process
(

w0),

2. wd = w1 −wMN
3. wn = wd −TT(TTT)−1Twd
4. w′

0 = wn +wMN

5. if
∥

∥w′
0 −w0

∥

∥ < ε stop, else w0 = w′
0, go to 1.

Here, the function process(·) indicates pre-processing of the
input WM candidate w0, such that the output is perceptually ac-
ceptable and locally-adapted to signal complexity (i.e., complexity-
regularized). Ideally, we would like to have w1 = w0 at step 1,
but this may not be the case in general. To achieve the task of
complexity regularization, we first apply element-wise multiplica-
tion to the entries of w0, where the scaling factor for the loca-
tion

(

lx, ly, lt
)

is the corresponding per-pixel cumulative complexity
measure Cc (·, ·, ·), which is shifted weighted average of the spatial
and temporal complexity measures: Cc

(

lx, ly, lt
)

= αCs
(

lx, ly, lt
)

+

βCt
(

lx, ly, lt
)

+θ . Here, α and β are chosen experimentally, and θ
is chosen to such that the mean of Cc is 1.0;note that this (linear)
functional form is a heuristic and is not necessarily optimal in gen-
eral. Nevertheless, this operation ensures that the WM in the low
(resp. high) complexity regions is attenuated (resp. amplified). The
next operation that constitutes the function process(·) is ideal low
pass filtering, via which smoothness is imposed on the WM. After
finding the “correction WM” wd on w0 as a result of step 2, we
project it onto the nullspace of T in step 3 and do the update in
step 4. Note that, wMN lives in the range space of TT , which is or-
thogonal to the nullspace of T; thus, we necessarily have Twn = 0,
which leads to T(wn +wMN) = TwMN = µ̂ −µ , which is crucial
in maintaining the quantization condition of Tx = µ̂ .
Remark: We experimentally observed that we can have poor con-
vergence rate (or no convergence at all) if the host is considerably
“uncomplex”. This is intuitively clear, since in that case the algo-
rithm tries to globally attenuate the WM energy in step 1, which
contradicts with the quantization condition. To avoid such prob-
lematic situations, we impose a complexity constraint on each can-
didate prism, whose statistic is to be quantized. In particular, given
a candidate prism, if the number of coefficients, whose cumulative
complexity measures are larger than a pre-specified threshold, is
large enough, we declare that prism to be complex-enough for wa-
termarking and proceed; otherwise we re-select another PR prism.
With this adaptive rectangle selection, we observed that the pro-
posed iterative algorithm always converged in practice.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

We experimentally study the performance of the proposed algorithm
and [1]. We used 4 various videos with different spatial and tem-
poral content at 640×480 resolution. The length of each region is
selected as 300 frames. Complexity map is created at 2×2 spatial
DWT decomposition and further downsampled to match the actual
embedding resolution. Detailed parameter set can be found in [1].
The α and β as introduced in 4 are both set to 0.003.

We first compare the WM that is generated by the proposed
system and [1]. Figure 3 shows a frame from an artificially edited
video. The lower portion of the video is set to a constant value.
Lower left pane and and lower right pane show the WM generated
by [1] and the proposed system respectively (both magnified by the
same amount for visibility). It is easily seen that the proposed sys-
tem avoids embedding WM in the edited region.

Then we compare the correlation detector performance under
the geometric attacks of rotation and cropping. We take a random
region from each of the 4 different videos and determine the decod-
ing performance for 100 users. We show the cumulative Receiver
Operating Characteristics(ROC) curves in figures 4 and 5 for 5.4
degrees rotation and 16 percent areal cropping respectively. We see
that there is no significant performance difference at all.
Discussion: We proposed a novel method for complexity regu-
larized watermark embedding via quantization of pseudo-random
semi-global linear statistics. The proposed algorithm uses a stochas-
tic video model to generate a complexity map. We use the complex-



Figure 3: Top: An artificially edited video frame such that the bot-
tom half is constant; Lower left: WM generated by the algorithm
[1](×50 for visibility); Lower right: WM generated by the proposed
algorithm (×50 for visibility)

ity map to locally adapt the WM to the signal. Experiments show
that the proposed video model is accurate and it is as robust against
reasonable geometric attacks as [1] which does not perform com-
plexity regularization.
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