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ABSTRACT 
A new approach to multi-resolution modeling of images is 
introduced and applied to the task of semi-unsupervised 
texture segmentation using Gaussian Markov random fields 
(GMRFs). It is shown that traditional GMRF modeling of 
multi-resolution coefficients is incapable of accounting for 
the non-Gaussian statistics which often characterize the 
multi-resolution coefficients. On the other hand, the mar-
ginal distributions of the new approach can be closely mod-
eled using a Gaussian distribution, and therefore lend itself 
efficiently to GMRF statistical modeling of images. Experi-
mental results of texture segmentation using textures with 
non-Gaussian marginal distributions suggest that the new 
framework is superior to traditional GMRF modeling of the 
multi-resolution coefficients for segmentation of non Gaus-
sian textures. 

 

1. INTRODUCTION 

There have been many applications presented in the literature 
in which Gaussian Markov random fields (GMRFs) were 
employed  for the modeling of image statistics. GMRF mod-
eling  accounts for the correlation structure of an observation 
field while keeping the mathematical derivation tractable. A 
GMRF model assumes that an observation field is a realiza-
tion of a multivariate Gaussian distribution with a certain 
parametric type of covariance matrix [1] which in turn (as-
suming a toroidal structure) necessitates the marginal distri-
butions to be Gaussian. Therefore, GMRF modeling may not 
be efficiently utilized in cases where the marginal distribu-
tion of the observation field does not conform to a Gaussian 
distribution.  
The GMRF model has been used to model various multi-
resolution structured observation fields, where for the case of 
multi-resolution based texture segmentation, both the Gaus-
sian pyramid and the wavelet transform have been employed 
[2,3]. When modeling the statistical structure of the wavelet 
coefficients of natural images, the GMRF model is often not 
applicable since the marginal distributions of the wavelet 
coefficients are characterized by a large peak at zero and 
heavier tails than a Gaussian of the same variance [4,5]. A 
similar argument applies to the Gaussian pyramid representa-
tion, which does not conform to a Gaussian marginal distri-
bution. Early computer vision algorithms ignored the non-

Gaussian statistics and used features of the first two moments 
exclusively [6]. To account for these marginal statistics, the 
generalized Gaussian parametric distribution has often been 
used, however it cannot account for the statistical dependen-
cies between adjacent coefficients. Another approach which 
accounts for the marginal statistics without the assumption of 
statistical independence of the wavelet coefficients is the so 
called hidden Markov trees [7], where each coefficient was 
assumed a realization of a Gaussian mixture distribution, 
where the statistical dependence between the coefficients is 
modeled using a tree structured hidden Markov model. In a 
previous work [8], we have introduced new feature statistics, 
which we applied to wavelet-based texture classification and 
showed classification results superior to [9]. The feature is 
based on the local second moment estimates of the wavelet 
coefficients which distribution was shown to be logarithmi-
cally scaled. This work complements [8], by applying the 
feature to GMRF based semi-unsupervised texture segmenta-
tion. 

2. LOCAL SECOND MOMENT ESTIMATES 

2.1 The Gaussian scale mixtures (GSM) distribution 
The marginal distributions of the wavelet coefficients of 
natural images are characterized by a large pick at zero and 
heavier tails than a Gaussian of the same variance. There 
have been a number of parametric distribution models sug-
gested that can account for these non-Gaussian statistics, 
such as the generalized Gaussian, or Gaussian mixture distri-
butions. In [4,5] GSM were proposed as a distribution model 
that can account for both the marginal and joint distribution 
properties of local neighborhoods of the coefficients.  
The probability density of a GSM variable is of the form: 
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uC  is a covariance matrix, and z  is a positive scalar random 
variable referred to as the hidden multiplier, and X  is a ran-
dom vector composed of the neighborhood’s coefficients. 
 
2.2 Maximum likelihood estimator of the hidden multi-

pliers 
Assuming that the covariance matrix is of the form 2

u uC Iσ=  
(this is valid for the wavelet transform since the wavelet co-



efficients are roughly de-correlated) and setting 2 1uσ =  (ig-

noring the proportionality constant 2
uσ ), the maximum like-

lihood estimator is given by: 
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where N  is the number of coefficients within the neighbor-
hood. Therefore the hidden multiplier’s estimate corresponds 
to the local second moment estimate.  
 
2.3 A parametric distribution for the logarithm of the 

local second moment estimates 
The distribution of the hidden multipliers in natural images, 
was shown empirically in [5] to be closely modeled by a 
Gaussian density on a logarithmic scale. Therefore we expect 
the logarithm of the local second moment estimates to follow 
the same density model. Since the hidden multipliers’ distri-
bution in [5] was derived directly from the dataset without 
the intermediate stage of computing the local second moment 
estimates, we examined the empirical distribution of the 
logarithm of the local second moment estimates. Fig. 1 
shows the average over the histograms of 180 sub-bands of 
20 texture images where each histogram was normalized for 
mean and variance. It can be verified that the density of the 
logarithm of the local second moment estimates of the wave-
let coefficients, closely follows a Gaussian distribution.  
 
2.4 A new feature space 
We compute the logarithm of the local second moment esti-
mate for each overlapping 3x3 neighborhood in each sub-
band of the wavelet transform using (1), where we assumed a 
toroidal structure for the boundaries. Thus a new feature 
space is obtained, where the marginal distribution of the fea-
tures in each sub-band is closely Gaussian. Since the loga-
rithm of the local second moment estimates of the wavelet 
coefficients is computed for overlapping neighborhoods, 
there is a large spatial correlation among neighboring obser-
vations in the new features. Since GMRF modeling is 
equivalent to assuming a multivariate Gaussian distribution 
with a certain parametric type of covariance matrix [1] (as-
suming a toroidal structure) it lends itself efficiently to statis-
tical modeling of the new feature space. Although the co-
occurrence histograms of the local second moment estimates 
which we have examined did not conform to a multivariate 
Gaussian distribution, we believe that since the marginal 
distribution is Gaussian, modeling the new feature space us-
ing a GMRF is more accurate than modelling other feature 
spaces such as the Gaussian pyramid or the wavelet trans-
form using a GMRF.  

3. SEMI-UNSUPERVISED TEXTURE 
SEGMENTATION USING GMRF 

Our texture segmentation algorithm follows [2] with a few 
major differences described in section 3.4. We consider 
semi-unsupervised segmentation where the number of tex-
ture classes is known in advance, and the parameters of the 

observation field are estimated in an unsupervised manner. 
The parameters for the label field were selected experimen-
tally. 

 
Fig. 1. Empirically measured histograms for the loga-
rithm of the local second moment estimates compared 
to a Gaussian density (dashed line). 
 

 
3.1 Statistical models 
In order to perform texture segmentation, a doubly stochastic 
model is used, where Y  is the observed field and X  is the 
class label field, which is defined on a multi-resolution lat-
tice. We denote ( )nX  to be a raster scanned vector of the 
class labels assigned to level n  of the lattice, which can take 
values from the class label set {1, , }M… . Its distribution 
follows a multi-scale Markov random field, where both intra-
scale and inter-scale pair-wise clique types, denoted 1C  and 

2C  respectively, are used. 1C  is the set of all first order 
neighborhoods in the same level [1], and 2C  is the set of all 
the neighborhoods which include a node at level n , and its 
parent at level 1n + , and its four sons at level 1n −  (level L  
is the coarsest level and 1 is the finest level).  
Accordingly, the probability mass function for X  is given 
by: 
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where ( )n s  is the level of node s , and z  here is a normaliz-
ing constant. 
We denote ( , )n kY  to be a raster scanned vector of the ob-
served data field at level n  which is assumed to be a causal 
GMRF model conditioned on the class label field, where the 
number of prediction coefficients is R . We assume that each 
of the multi-resolution’s scales and orientations are statisti-
cally independent. Therefore the conditional probability den-
sity function of Y  given X  is 
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where ( , )S n k  is the set of all observation nodes in level n  
and orientation k , and ( )O n  is the number of orientations in 
level n , where we define the coarsest scaling sub-band to be 
the fourth orientation in level L . 
 
3.2 Texture segmentation 
The optimization criteria used to perform the segmentation is 
the minimization of the expected value of the misclassified 
nodes in the multi-resolution lattice. The decision rule that 
minimizes this criterion can be shown to be given by the 
maximum of the posterior marginals (MPM): 
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The posterior marginals can be approximated as follows. 
First, a Markov chain ( )X t  is generated using a Gibbs sam-
pler with constant temperature, which converges to a random 
field with probability mass function | ( | , )X Yp x y θ  where θ  
is the set of the GMRF parameters, and where: 
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Subsequently, the posterior marginals are computed as the 
fraction of time the Markov chain spends in each label at 
each node of the lattice: 
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where T  is the number of iterations used in the Gibbs sam-
pler. 
 
3.3 Parameter estimation 
The parameter estimation for the GMRF model of each tex-
ture class is performed using an EM like algorithm where the 
segmentation and parameter estimation stages are repeated 
alternately. In each iteration, first the posterior marginals are 
computed using the current parameter estimates and the 
Gibbs sampler, as has been described previously. Subse-
quently the parameters are updated using the following equa-
tions (These equations are obtained by using equation (2) for 
the class means, and maximizing the EM Q-function for 
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where oldθ  is the set of old parameters estimates. 
The class means are first computed using (2), subsequently 
the class prediction coefficients are computed using (3), and 
finally the class variances are computed using (4). 
 
3.4 Comparison to Comer and Delp [2] 
Our texture segmentation algorithm differs from [2] in three 
major details: 

1) The observation field in [2] was the Gaussian 
pyramid representation, therefore it employed only 
one orientation as opposed to three in our method. 

2) Since the filter coefficients used to obtain the Gaus-
sian pyramid representation in [2] sum to one, the 
class means did not depend on the resolution level, 
whereas we use different class means for each reso-
lution level. 

3) The different levels in the Gaussian pyramid in [2] 
were not assumed to be statistically independent. 
The pyramid representation was divided into quad-
trees, where each quad-tree was scanned from the 
coarsest resolution to the finest by a predefined 
raster scan order. Our approach on the other hand  
assumes each of the sub-bands to be statistically in-
dependent, therefore the observations of each sub-
band are raster scanned, ignoring all other levels 
and orientations. 

4. EXPERIMENTAL RESULTS 

In order to test the new feature space for multi-resolution 
based segmentation of textured images, we implemented the 
texture segmentation algorithm described in Section 3, where 
the new feature was used. We compared the results obtained 
using the new feature both to those obtained using the seg-
mentation algorithm described in [2], where the Gaussian 
pyramid was used as the observation data, and to those ob-
tained when using the wavelet transform with the texture 
segmentation algorithm described here. 
 
4.1 Implementation details 
We used three levels both for the wavelet transform and  four 
levels for the Gaussian pyramid. The values of 1β  and 2β  
were identical for each of the four levels where we used 

1 21.6, 0.8β β= = , and three prediction coefficients were 
used for the causal GMRF model. In each iteration of the 
parameter estimation stage we randomly initialized the label 
field (but for the last iteration). The segmentation result is 
that of the finest resolution level. 



4.2 Segmentation results 
The experiments in Fig. 2 show that all the algorithms suc-
cessfully separated the two textures since the two textures are 
very different. The results in Fig. 3 show a significant im-
provement when using our texture segmentation method, 
both when using the wavelet transform and when using the 
new feature, compared to the method described in [2]. Fig. 4 
shows a significant improvement when using the new feature 
compared to using the wavelet transform, which shows that 
the Gaussian statistics of the marginal distributions of the 
new feature are of major importance for GMRF statistical 
modeling.  

5. CONCLUSIONS 

We have presented a new feature space that can be used for 
multi-resolution based statistical modeling of images. Since 
the marginal distributions of the sub-bands of the new feature 
are closely Gaussian, it facilitates the statistical description of 
the joint distribution, compared to other pyramid representa-
tions such as the Gaussian pyramid, or the wavelet transform, 
which show non-Gaussian statistics. Our main conclusion is 
that the new feature is more appropriate to texture segmenta-
tion using GMRF compared to other representations such as 
the Gaussian pyramid or the wavelet transform.  
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Fig. 2. Segmentation results: (a) Original image (size 128x128), 
(b) Segmentation results using the Gaussian pyramid as de-
scribed in [ 2], (c) Segmentation results using the wavelet trans-
form, (d) Segmentation results using new feature space. 
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Fig. 3. Segmentation results: (a) Original image (size 128x128), 
(b) Segmentation results using the Gaussian pyramid as de-
scribed in [ 2], (c) Segmentation results using the wavelet trans-
form, (d) Segmentation results using new feature space. 
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Fig. 4. Segmentation results: (a) Original image (size 128x128), 
(b) Segmentation results using the wavelet pyramid, (c) segmen-
tation results using the new feature space. 
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