SOLVING FUNDAMENTAL MATRIX FOR UNCALIBRATED SCENE
RECONSTRUCTION'
Ugur Topay, Engin Tola and A. Aydin Alatan
Department of Electrical and Electronics Engineering
M.E.T.U., Balgat, 06531, Ankara, TURKEY
e-mail: alatan@eee.metu.edu.tr

ABSTRACT

3D scene reconstruction from uncalibrated image sequences is
a challenging problem. One of its critical subproblems is to
solve for fundamental matrix in which the algebraic relations
between consecutive images are stored. 8-point, normalized 8-
point, algebraic minimization and geometric distance
minimization methods are tested for their performances against
noise by synthetic and real image simulations. The
performances of these methods are also tested for determining
camera intrinsic parameters by solving Kruppa equations.
Considering their computational complexities and noise
robustness, the normalized 8-point algorithm gives a
comparable performance against more complex algorithms in
terms of errors, especially with high corresponding points.

1. INTRODUCTION

In order to reconstruct a scene from images taken from
different locations, camera calibration (intrinsic camera
parameters and relative motion of the images with respect to
each other) must be known. 3-D reconstruction of scenes from
uncalibrated images is one of the most challenging problems in
computer vision. The process of 3D scene reconstruction from
uncalibrated images is composed of the following sub-
problems: finding corresponding 2D points between images;
determination of algebraic relations between the images;
camera self-calibration; determination of relative motions
between images and calculation of 3D scene points.

The performance of camera self-calibration depends on the
accuracy of corresponding points and calculated fundamental
matrices (F-matrix) (i.e. algebraic relations between the
images). In order to determine the fundamental matrix, the
corresponding points on two images are required. In the
literature, different methods have been developed for solving
F-matrix [1-3]. Four of these methods are introduced and
compared in the next sections.

On the other hand, among different methods developed for
camera self-calibration, the most well-known is developed by
Maybank and Faugeras [6]. In this method, some nonlinear
quadratic equations, called as Kruppa Equations, are
constructed via fundamental matrices and unknown relative
camera matrices and tried to be solved in different ways [6-8].
By using fundamental matrices and estimated camera intrinsic
parameters, the relative motion (R, t) between the cameras or
images can be determined by using well-known method
developed by Longuet-Higgins [10]. At the end, by using
estimated camera intrinsic parameters and relative motions
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between images, 3D coordinates of corresponding points up to
scale can be determined by linear triangulation method [1].

2. SOLVING FUNDAMENTAL MATRIX
The fundamental matrix F is the algebraic representation of the
epipolar constraint for the uncalibrated cameras. The epipolar
constraint is described as follows: For each point m in the 1st
image plane, its corresponding point m ’lies on its epipolar line
1%, and similarly for any point m”in the 2nd image plane, its
corresponding point m lies on its epipolar line Z,,. This relation
can be given as:
l')y=Fm and I, = F'm’ )

Since m lies on /7, and m “lies on /,,, following relations are
obtained :

m” Fm=0 and m" F'm’=0 )
where m; = [u, v, 1JT and m;” = [u;, v, 1]7. In the next
section different methods for solving F-matrix are examined.

2.1. 8-Point Algorithm [10]:
If n corresponding points (at least 8) are given, a set of linear
equations is obtained as:
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A robuts solution of this equation is the eigenvector
corresponding to the smallest singular value of A4, that is, the
last column of V in the Singular Value Decomposition (SVD)
of A = UDVT [2]. In order to obtain a unique solution, the rank
of A matrix must be equal to 8. Therefore, the closest singular
F’matrix to F matrix can be obtained as:
F’=Udiag(r, s, 0) V' (4)

where D = diag(r, s, t) wherer > s > t.

2.2. Normalized 8-Point Algorithm [4]:

Hartley [4] proposed a simple normalization on the
corresponding points of each image prior to applying 8-point
algorithm to improve the performance. This normalization
performed by translating center of corresponding points to
origin of image reference frame and then scaling the
corresponding points so that the average distance from the

origin becomes equal to \/5 . Finally, after the calculation of



A
F matrix by using the 8-point algorithm, it is converted to F
matrix of corresponding points before normalization as:

A
F=T,' FT, )
where T| and T, are transformation (normalization) matrices
for first and second images, respectively.

2.3. Algebraic Minimization Algorithm [1]:

In the 8-Point algorithm, the singular matrix F’is computed by
using SVD which minimizes the difference ||F~F]| [1]. Since,
all the entries of F do not have equal importance, some entries
are more affected by the corresponding points. Hence, F can
be represented as a product F = MJe], where M is a non-
singular matrix and [e/, is the skew-symmetric matrix of the
epipole e on the first image. This equation can also be written
as:

f=En Q)
] and 7 contains the entries of M.
e X

o [

Hence, the minimization problem becomes minimizing & =
[|AE7|| subject to the condition ||[En|| = 1. By using Levenberg-
Marquardt (LM) algorithm, the epipole e can be varied to
minimize ||&||. The initial estimate of epipole e can be found
from the 8-Point or the Normalized 8-Point Algorithm.

2.4. Geometric Distance Minimization Algorithm [5]:

In this method, the distances between epipolar lines and the
corresponding points are minimized [1-3,5]. Therefore, the
cost function representing the total square of distances between
corresponding points and epipolar lines is given as:

COStGD= 1 1 ,’F ,2
;[(Fm-)f FFmY, | (F'm)) +(Fm,)] J(m’ m)

In order to minimize this non-linear cost function, the F matrix

is parametrized by using epipoles on both images (e and ¢).
The details of parametrization can be found in [5]. Since the
parametrization set of the F-matrix can be totally divided into
36 maps, a best map selection algorithm is also proposed [5].
After selecting one of the maps, F-matrix is parametrized and
cost function is minimized by using LM algorithm.

3. SOLVING KRUPPA EQUATIONS
CCD camera model utilized during calibrations is given as:
a, S u, %

K=|0 «a v,

0 0 1

where [uy, vy, 1]7 is the principal point in terms of pixel

coordinates, a. is the skew angle, o, = f/ p, and a, = f/ p, are

focal length of the camera in terms of pixel dimensions on the

x and y directions, respectively. The Kruppa Equations
between two images can be found by using the relation [6-9] :

r’viAv, rsviAv, s’viAv, ®

ulAu, -ulAv, ulAuy,
where v; and w; are the columns of U and V matrices,
respectively (SVD(F) = UDV") and A=KK". In order to
estimate 5 unknown parameters, one can use at least 6 Kruppa
equations obtained from F matrices of 3 image sequences. This

nonlinear least squares problem can be solved using LM
minimization algorithm for finding the parameters of A.
Finally, camera calibration matrix K can be calculated from 4
by Cholesky factorization.

4. SIMULATIONS

4.1. Fundamental Matrix Solutions
The simulations are conducted in two phases using synthetic
and real data. During synthetic tests, performance of the
algorithms is first tested against correspondence errors by the
help of additive Gaussian noise. On the second part, the
performance for different number of correspondences is tested.
The synthetic scene is composed of two orthogonal planes
which are divided into 10x10 grids. The image plane is the
size of 35x35mm, the focal length is equal to 50mm. and the
image plane is divided into 500x500 pixels. The origin of the
pixel frame is placed on the centre of the image plane. The
camera calibration matrix is arbitrarily chosen as:
714.286 0 0

0 714286 0

0 0 1

Finally, by applying different rotations and translations as the
camera motion, approximately 11000 different views of the
scene are generated.
As a first step, 100 image pairs are randomly selected. Then,
Gaussian noise with zero mean and between 0 to 2 pixels
standard deviation is added on both u and v coordinates of the
corresponding points. In order to measure the performance, the
mean distance between the corresponding points and the
epipolar lines is used as an error criterion :

J(m'Fm)z ©)

Error= 1% 1 N 1

8\ (Fm); +(Fm),  (F'm)); +(F'm)),
The mean and standard deviation of errors for 8-Point
algorithm are given in Fig. 1. The mean and standard deviation
of percentage improvements for other algorithms with respect
to 8-Point algorithm are also plotted in Figure 2.
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Figure 1 : Mean and standard deviation of errors for 8-Point
algorithm for different noise levels

In the second part of synthetic image simulations, the
performance of the fundamental matrix methods are compared
while increasing the number of corresponding points from 8-
200. 100 image pairs, which have corresponding points with 0
mean and 0.5 pixel standard deviation Gaussian noise, are
used. The results of simulations are plotted in Figs. 3 and 4.
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Figure 2 : Mean & standard deviation of Percentage
Improvements wrt 8-Point Algorithm for different noise levels
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Figure 3 : Means and standard deviations of errors by 8-Point
algorithm for different number of corresponding points
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Figure 4 : Means and standard deviations of percentage
Improvements for different number of corresponding points

In order to compare the performance of the fundamental matrix
methods for real image pairs, the Batlnria and Colorlm image
pairs are used with 433 and 266 correspondence points,
respectively. In Table 1, the mean distance between the
corresponding points and the epipolar lines for image are
given.

Algorithm Exec. time (secs)
8-Point <0.1
Normalized 8-Point <0.1
Algebraic Minimization ~21.3
Geo. Distance Min. with Map Selecting ~936

Algorithm Batlnria (pix.) | ColorIm(pix.)
8-Point 1.020089 551.9505
Normalized 8-Point 0.234465 9.1086
Algebraic Minimization 0.226639 8.973397
Geometric Distance Min. 0.227583 8.630695
with Map Selecting

Table 1 : The mean distances between the corresponding
points and epipolar lines for real image pairs

In order to compare the complexity of algorithms, the
execution times of algorithms in MATLAB with 200
corresponding points are given in Table 2 (AMD Athlon 1800
MHz. processor and 512 MBytes RAM).

Table 2 : Execution times for different algorithms

4.2. Results for Camera Self-Calibration :

In order to show the effects of fundamental matrix algorithms
to the solution of Kruppa equations, synthetic and real image
simulations are performed. In synthetic image simulations, 100
different 3-image sequences are randomly selected from
synthetic image collection and then Gausian noise (0 to 0.5
pixel standard deviation) added on 200 corresponding points.
Since the LM algorithm needs an initial points near to solution
for optimization parameters, the initial camera parameters are
taken as: o, = 785.7146, o, = 785.7146, s = 10, uy = 10 and v,
= 10. The mean and standard deviation of estimated a,, s and
u, parameters with respect to different noise levels are plotted
in Fig.5.(a),(b) and (c), respectively.

For the real image simulation, the camera calibration
paramaters of Church 3-image sequence are estimated by
solving Kruppa equations, which are constructed using
fundamental matrices obtained with different methods (see
Table 3). 128 corresponding points found and the initial values
for camera intrinsic parameters are given close to the values in
[8]: o, = 700, a, = 700, s = 0, ug = 300 and v, = 400. Finally,
the 3D coordinates of corresponding points are estimated by
using the camera parameters calculated ny Geometric distance
minimization method (Fig. 6).

5. CONCLUSIONS

According to the simulation results, it should be easily stated
that 8-Point algorithm should not be preferred in any
application, since this algorithm is highly susceptible to noise
over the corresponding point coordinates.

It is observed that if the number of corresponding points is
limited, the geometric distance minimization algorithm gives
the best improvement over 8-point algorithm. However, the
normalized 8-point algorithm and algebraic minimization
algorithm give similar results for larger number of
correspondence points. Since the complexity of the geometric
distance minimization algorithm is higher, the normalized 8-
point and algebraic minimization algorithm might be preferred
for larger number of corresponding points.

Observing different level of errors for the estimated
fundamental matrices, one can conclude that the quality of this
matrix depends on the relative motion between images. In
other words, the noise on some of the correspondences is more
effective while estimating the fundamental matrix.

It should also be noted that the best map selection algorithm,
which is utilized in geometric distance minimization method is
suboptimal. If one performs minimization for all 36 maps, and
selects the one with the minimum error value, then the




performance of this algorithm is improved while sacrificing
from computational complexity.
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Figure 5 : Mean and standard deviations of estimated (a) o,
(b) s and (c) uy values after solving Kruppa Equations, formed
by the fundamental matrices estimated by different methods

Algorithm O, o, S uy Vo

Norm.8-Pt 647.78 | 488.65 | -155.89 | 164.48 441.02

AlgebMin 652.24 | 453.31 | -143.07 | 122.05 495.76

GeoDisMin 638.87 | 477.49 | -173.10 | 161.03 486.72

Table 3 : Estimated Camera Intrinsic Parameters for Church

The error over the estimated camera calibration parameters
increases rapidly after a noise level on the corresponding
points. Since the normalized 8-point and algebraic
minimization algorithm results with similar errors (even
similar for the geometric distance minimization algorithm for
high number of corresponding points), all these methods give
similar errors on the estimated camera calibration parameters.
Finally, 3D depths of the correspondences of the Church
image sequence are quite acceptable for geometric distance
minimization method, showing the applicability of the
algorithms in practice.
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Figure 6: Estimated 3D positions of corresponding points between images1-2 of Church sequence (Geo. Dist. Min.)
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