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ABSTRACT
Chaotic signals and systems are potentially attractive in many
signal processing and communications applications. Max-
imum likelihood (ML) and Bayesian estimators have been
developed for piecewise-linear (PWL) maps, but their com-
putational cost is excessive for practical applications. Several
computationally efficient techniques have been proposed for
this class of signals, but their performance is usually far from
the optimum methods. In this paper, we present an asymp-
totically optimal estimator based on the Viterbi algorithm for
estimating chaotic signals observed in additive white Gaus-
sian noise. Computer simulations demonstrate that the per-
formance of this estimator is similar to that of optimum meth-
ods with only a fraction of their computational cost.

1. INTRODUCTION

Chaotic signals (i.e. signals generated by a suitable non-
linear dynamical system in a chaotic state) have received
much attention over the last decade. Although chaotic signals
are generated by deterministic systems, they display features
typical of purely random signals [1]: sensitivity to initial
conditions, quickly decaying autocorrelation function, high
bandwidth with an approximately flat spectral density, and
practical unpredictability in the medium/long term.

These characteristics make them attractive in a wide
range of signal processing and communications applications.
In this paper we consider unidimensional chaotic maps. Al-
though this is the simplest class of chaotic systems, they are
useful in several different areas: random number genera-
tion [2], spread spectrum chaotic communications [3], wa-
termarking [4], cryptography [5], etc. In any case, regard-
less of the application, it is necessary to develop computa-
tionally efficient detection and estimation algorithms which
take into account the dual (deterministic/random) nature of
chaotic signals and which show a robust behaviour under re-
alistic conditions (e.g. in the presence of additive noise).

Estimation of chaotic signals has been addressed in sev-
eral papers. The maximum likelihood (ML) estimator of the
initial condition of a chaotic sequence has been developed
in [6] for piecewise linear (PWL) maps. Bayesian estima-
tors have been proposed as well for any PWL map in [7].
These estimators show a good performance and attain the
Cramer-Rao lower bound (CRLB) asymptotically as the sig-
nal to noise ratio (SNR) goes to infinity.

Unfortunately, the computational cost of these optimum
estimators grows exponentially with the length of the chaotic
sequence, and cannot be reduced in general (in some partic-
ular cases, such as the tent-map, an efficient recursive im-
plementation of the ML estimator is possible [8]). Conse-
quently, there is still a need to obtain cost-effective estimators
for their use in practical applications. Many suboptimal algo-
rithms have been proposed (see for example [9, 10, 11, 12]),
but their performance is usually far away from that of the ML
and Bayesian estimators, specially in the low/medium SNR
range.

In this paper we consider the use of the Viterbi algo-
rithm, which in this case is an approximate method, for the
estimation of the itinerary of the chaotic sequence. Once
the itinerary is known, the ML estimator can be obtained in
closed form for a PWL map, or through a simple local gradi-
ent descent or grid search method for non-PWL maps.

Note that the Viterbi algorithm has already been consid-
ered for the estimation of the itinerary of chaotic sequences in
[13]. However, the work in [13] relies on a linear filter repre-
sentation of the chaotic system which is not always possible,
requires delay and truncation (thus generating pseudochaotic
signals, which may lose some of the interesting features of
the actual chaotic signals), and a trellis with a large number
of states. Unlike [13], our approach is able to generate truly
chaotic signals (since it is based on backward iteration of the
chaotic system) is valid for any chaotic map, and provides a
good performance with a reduced number of states.

2. CHAOTIC MAPS AND SYMBOLIC DYNAMICS

In this work we consider sequences generated by unidimen-
sional chaotic maps. The n-th sample of the sequence is ob-
tained iterating a known initial condition, x[0], according to

x[n] = f (x[n−1]) = f 2(x[n−2]) = . . . = f n(x[0]), (1)

where f (x) is a suitable nonlinear and noninvertible function,
f k(x) denotes the functional composition of f (x) with itself
k times, and 1 ≤ n ≤ N. Although the estimation technique
based on the Viterbi algorithm is valid for any chaotic map, in
the sequel we concentrate on PWL maps defined on a phase
space I = [e0,eM], which can be described as

f (x) =
M

å
i=1

fi(x)c Ei(x), (2)



where fi(x) = aix + bi, Ei = [ei−1,ei) for 0 ≤ i ≤ M − 1,
EM = [eM−1,eM], and c Ei(x) is an indicator or characteristic
function, which denotes whether x belongs to a given region:

c Ei(x) =

{

1, x ∈ Ei;
0, x /∈ Ei.

(3)

As an example, we focus on the skew tent-map (SK-TM),

f (x) =

{

x
p , 0 ≤ x < p;
1−x
1−p , p ≤ x ≤ 1.

(4)

Where 0 < p < 1 is a parameter of the map. In this case
M = 2, E1 = [0, p) with a1 = 1/p and b1 = 0, and E2 = [p, 1]
with a2 = −1/(1− p) and b2 = 1/(1− p).

A very useful tool for analysing chaotic signals is sym-
bolic dynamics. For any map we can define a partition of
its phase space into a set of nonoverlapping intervals where
the map is continuous and monotonous in such a way that
they cover the whole phase space. This partition is never
unique, but we can always find the simplest possible parti-
tion, which is called the natural or generating partition of
the map. For PWL maps, this partition is clearly given by the
Ei (i = 1, . . . , M) and contains M elements. Thus, for the
SK-TM it is simply E1 = [0, p) and E2 = [p, 1].

Now, we can define the symbolic sequence or itinerary
of the map as the sequence of regions of its natural partition
that the chaotic signal visits during its time evolution:

s[n] = i ⇔ x[n] ∈ Ei, n = 0, . . . , N −1. (5)

For PWL maps it can be easily shown that each point in their
phase space has a unique symbolic sequence of length N as-
sociated. Moreover, a symbolic sequence of infinite length
defines a single initial condition, x[0], and an itinerary of fi-
nite length defines a closed region of possible initial values
which becomes narrower as the length of the sequence in-
creases [14].

Additionally, the symbolic sequence provides an alterna-
tive way of generating the chaotic signal. Instead of obtain-
ing the n-th sample of the sequence, x[n], iterating forward
from a known initial condition, x[0], we can obtain it iterat-
ing backwards from a known final condition, x[N], as

x[n] = f−1
s[n](x[n + 1]) = . . . = f−(N−n)

s[n], ..., s[N−1]
(x[N]). (6)

Where f−1 denotes the inverse map and f−(N−k) denotes the
functional composition of f−1 with itself N − k times. Note
that (6) requires a priori knowledge of the itinerary in order
to generate the desired chaotic sequence. For a generic PWL
map the inverse function is

f−1
s[n](x) =

x−bs[n]

as[n]
, (7)

and for the SK-TM we have

f−1
s[n]

(x) =

{

px, s[n] = 1;
1− (1− p)x, s[n] = 2.

(8)

3. MAXIMUM LIKELIHOOD ESTIMATION

The data model that we consider in this paper is

y = x+w, (9)

where y = [y[0], . . . , y[N]]T is the observations vector,
x = [x[0], . . . , x[N]]T is the chaotic sequence, and w =
[w[0], . . . , w[N]]T is the noise vector whose samples, w[n]
(0 ≤ n ≤ N), correspond to zero-mean, white Gaussian noise
with variance s 2 (i.e. w ∼ N(0, s 2I), being I the (N + 1)×
(N + 1) identity matrix).

The ML estimator obtains the chaotic sequence which
maximizes the likelihood function, p(y;x), which is equiva-
lent to minimizing the cost function,

J(x) = (y−x)T (y−x), (10)

since p(y;x) is a multivariate Gaussian PDF. However, it is
apparent from (1) that the whole chaotic sequence can be
expressed as a function of a single sample. Choosing x[N] as
a reference, we obtain an alternative cost function:

J(x[N],s) =
N

å
k=0

(

y[N − k]− f−k
sN−k:N−1

(x[N])
)2

, (11)

where s = [s[0], . . . , s[N −1]]T is the symbolic vector (note
that s[N] is not used to generate the chaotic sequence), and
sN−k:N−1 = [s[N − k], . . . , s[N −1]]T . Then, the ML estima-
tor of x[N] is given by

x̂ML[N] = argmin
x[N]

J(x[N], ŝML), (12)

where ŝML is the ML estimate of s.
We need to solve two problems to obtain the ML esti-

mator of x[N]. First, the ML itinerary cannot be obtained
taking derivatives of (11), because J(x[N],s) is a discontinu-
ous function of the symbolic sequence. Nevertheless, since
the number of valid sequences is finite (at most MN in gen-
eral, 2N for the SK-TM), a “brute force” approach is possi-
ble: test all the sequences, obtain their ML estimator, x̂si

ML[N]

(i = 1, . . . , MN ), and select the one which minimizes (11).
A second problem comes from the fact that, even if we

know the itinerary, we need a closed expression for the n-
th iteration (backward in this case) of the chaotic sequence
to be able to obtain x̂ML[N] in closed form. For PWL maps
closed-form expressions have been developed in [6] and [15]
for the forward and backward iteration respectively. These
equations turn out to be linear in x[0] and x[N]. Hence (11) is
quadratic in x[N] for a given itinerary, si, and has a unique
minimum, x̂si [N], which can be obtained easily taking its
derivative with respect to x[N] and equating it to zero [15].

However, x̂si [N] is the ML estimator of x[N] only pro-
vided that the symbolic sequence is si, and that x̂si [N] can
generate a chaotic sequence with the specified itinerary (i.e.
that f−(N−k)

s
i
N−k:N−1

(x̂[N]) exists and belongs to the phase space of

the map, I = [e0,eM], for 0 ≤ k ≤ N). Otherwise it is neces-
sary to apply a threshold to obtain the ML estimator of x[N]
for that symbolic sequence (see [6, 7] for a complete discus-
sion in x[0]). Fortunately many chaotic maps, such as the SK-
TM, are onto [14]: fi(x) maps Ei into the whole phase space



of the map for every i. Hence all the symbolic sequences are
valid, and we only need to guarantee that x̂si [N] belongs to I:

x̂si
ML[N] =







e0, x̂si [N] < e0;
x̂si [N], x̂si [N] ∈ I;
eM, x̂si [N] > eM.

(13)

Finally, the ML estimator of x[N] is

x̂ML[N] = argmin
i

J(x̂si
ML,si). (14)

Once we obtain the ML estimator of the final condition of
the sequence, x̂ML[N], and of the itinerary, ŝML, the rest of
the sequence can be obtained iterating backwards using (6):

x̂ML[N − k] = f−k
ŝ

ML
N−k:N−1

(x̂ML[N]), k = 1, . . . , N. (15)

4. ASYMPTOTIC MAXIMUM LIKELIHOOD
ESTIMATION USING THE VITERBI ALGORITHM

The Viterbi decoding algorithm (VDA or VA) was devel-
oped originally by Andrew Viterbi in 1967 as an asymp-
totically optimum decoding method for convolutional codes,
and was later extended by Omura and Forney to the detec-
tion of received signals distorted by intersymbol interference
(ISI). First, a trellis diagram is constructed representing the
valid transitions between states of the system at each itera-
tion and their cost. Then, the VA searches for the shortest
path through the trellis efficiently by merging paths and dis-
carding unlikely sequences.

In this case, it is clear that a trellis diagram can be con-
structed for the chaotic sequence iterating backwards from
x[N], using the symbolic sequence, s, to represent the states,
and s[n] for the transitions. However, it is also apparent that
this trellis requires MN states in general (2N for the SK-TM)
since the initial condition, x[0], depends on the whole sym-
bolic sequence (i.e. the system has a memory depth N −1).

In order to reduce the computational cost, we propose to
use a trellis with a reduced set of states, R = Mr, and apply
the VA. Although this is a suboptimal method, it provides a
quasi-optimal performance, since far away symbols become
less and less important in the estimation of s[n] and x[n].

The basic butterfly of the trellis diagram for r = 1 is
shown in Fig. 1. The branch metrics are given by

ci j[n] = |y[n + 1]− f−1
j (x̂i[n])|, (16)

where ci j[n] is the cost of taking the j-th branch starting from
the i-th node (1 ≤ i, j ≤ R) at the n-th time instant (1 ≤ n ≤
N), and x̂i[n], i ∈ {1, . . . , R}, is the sample obtained iterating
backwards N − n times from x[N] using the best sequence
which ends in the i-th node (state) at time n. The cost of the
i-th node at the (n + 1)-th instant can be obtained as usual
from that of all the nodes at time n as

Ci[n + 1] = min
1≤ j≤R

{C j[n]+ c ji[n]}. (17)

Since x[N] is not known, as the starting sample of each state
we use the closest point in Ei to y[N]:

x̂i[N] =







ei−1, y[N] < ei−1;
y[N], y[N] ∈ Ei;
ei, y[N] > ei.

(18)

rx̂2[N −n]

C2[n]

rx̂1[N −n]
C1[n]

r x̂2[N − (n + 1)]

C2[n + 1]

r x̂1[N − (n + 1)]
C1[n + 1]

. ...............................................................................................................................................................................................................................................................................................................................................
c11[n]

.

.....................................................................................................................................................................................................................................................................................................................................................................................................................

c21[n]

c22[n]

c12[n]

Figure 1: Basic butterfly of the trellis for the SK-TM using
only two states per iteration (M = 2, r = 1).

Finally, x[N] is estimated using the ML estimator given by
(14) with the itinerary obtained with the VA, and the rest of
the sequence is generated applying (15).

5. SIMULATION RESULTS

In this section we analyze the performance of the ML esti-
mator based on the Viterbi algorithm. We first study short
sequences, namely with N = 4. For the first example we
consider an SK-TM with parameter p = 0.2, and an initial
condition x[0] = 0.1934. Fig. 2 shows the mean square error
(MSE) of the sequence obtained averaging 1000 simulations
for all the estimators considered: the exact ML estimator, the
VA based estimator, and the hard-censoring ML (HC-ML)
estimator, which constructs an itinerary by hard-censoring of
the noisy data and then applies the ML estimator [12]. The
VA estimator attains the CRLB at the same SNR than the ex-
act ML estimator, and provides a similar performance. Both
the ML and the VA estimators provide a highly superior per-
formance than the HC-ML estimator.

The exact SNR at which the CRLB is attained depends
greatly on the chaotic map and the initial condition. As a
second example we consider the alternative map given by

f (x) =

{

x
p , 0 ≤ x < p;
x−p
1−p , p ≤ x < 1;

(19)

for which 0 < p < 1. For p = 0.5 this map is usually known
as the Bernouilli or binary shift map (BSM), and is much
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Figure 2: MSE for the SK-TM of the considered estimators:
ML, VA, and HC-ML.
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Figure 3: MSE for the BSM of the considered estimators:
ML, VA, and HC-ML.
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Figure 4: MSE for the BSM of the considered estimators:
VA and HC-ML.

easier to estimate than the SK-TM, as Fig. 3 demonstrates.
Now the ML estimator attains the CRLB at a greatly reduced
SNR (25 dB compared to the 55 dB of Fig. 3). The VA
achieves a quasi-optimal performance again and provides a
huge improvement with respect to the HC-ML.

Finally, we consider the estimation of longer sequences.
Specifically, we have used the BSM with N = 29 and p = 0.5.
In this case the ML becomes unfeasible to calculate since it
would require exploring 229 (over 500 · 106) itineraries and
thus the VA and HC-ML estimators are compared in Fig. 4.
Once more the VA improves greatly the performance of the
HC-ML estimator (e.g. it attains the CRLB at 20 dB of SNR
compared to the 50 dB required by the HC-ML).

6. CONCLUSIONS

The ML estimator of chaotic signals exhibits an exponen-
tial increase in its computational cost with the length of the
sequence. In this paper we have developed an efficient esti-
mator based on the Viterbi algorithm which achieves a quasi-
optimal performance with a reduced computational cost. Fu-
ture lines of research include extending the method to non-
PWL maps and maximum a posteriori (MAP) estimation,
and achieving an additional complexity reduction combining
the VA with a sphere decoding algorithm as in [16].
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