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ABSTRACT
A new frequency-domain direct adaptive approach is pro-
posed for general multichannel active noise control (ANC)
when both of the primary and secondary path channels are
uncertain and changeable. To reduce the cancelling errors,
two kinds of virtual error vectors are introduced and are
forced to zero by adjusting three adaptive FIR filter matri-
ces in an online manner, by which the convergence of the ac-
tual cancelling error to zero can be attained at the objective
points. Unlike other conventional approaches, the proposed
algorithm can give an inverse controller directly without need
of explicit identification of the secondary path channels. The
proposed algorithm can be implemented in the frequency-
domain to reduce its computational complexity.

1. INTRODUCTION

Active noise control (ANC) is a way of suppressing un-
wanted low frequency noises generated by primary sound
sources by emitting artificial secondary sounds to the ob-
jective points. Since the path dynamics cannot be precisely
modeled and may be uncertain and changeable, adaptive tun-
ing of the inverse controller is needed for ANC. A variety
of filtered-x LMS algorithms have been proposed to attain
the cancellation via feedforward adaptation. Modifications
of the filtered-x algorithm have also been investigated from
the stability point of view and stability assured filtered-x al-
gorithms have been given by one of the authors [1, 2, 3].
Stability assured filtered-x algorithms have also been inves-
tigated in [4, 5].

To deal with a general case when the secondary path
channels are unknown or changeable, there have been two
adaptive approaches: One is an indirect adaptive approach
which is based on on-line identification of the secondary path
dynamics, and the filtered-x algorithm using the identified
model, and the other is a direct adaptive approach which can
directly tune an adaptive feedforward controller without ex-
plicit identification of the path channels. In the indirect adap-
tive approaches, the identified model updates the secondary
path model appearing in the filtered-x algorithms. The stabil-
ity of the filtered-x algorithm linked with the secondary path
identification is not assured. According to the identified sec-
ondary path models, the feedforward inverse controller can
also be redesigned in a real-time manner. On the other hand,
no efficient direct adaptive approaches have been proposed to
deal with a general case in which all the path channel matri-
ces are unknown [6]. Thus, the proposed algorithm is based
on the direct algorithm.

Block frequency-domain implementations of adaptive fil-
ters can considerably improve their computational efficiency.

In particular, the frequency-domain LMS algorithm repre-
sents an exact and efficient implementation of the block time-
domain LMS algorithm. The greatest computational savings
can be obtained for long adaptive filter lengths, by perform-
ing both the convolution involved in the filtering operation,
and the correlation involved in the adaptation process, in the
frequency-domain using the fast Fourier transform (FFT).
Suitable precautions then have to be taken to avoid circu-
lar convolution and correlation effects, such as the use of
the overlap-save method, and the use of causal gradient con-
straints, as reviewed, for example, by [7].

Therefore, the purpose of this paper is to propose a new
direct adaptive approach to a general multichannel case in
frequency-domain, which does not require explicit identifica-
tion of the secondary path dynamics. To reduce the canceling
errors, two virtual error vectors are introduced and forced to
zero by adjusting parameters in three adaptive filter matrices
in an online manner.

2. DIRECT ADAPTIVE APPROACH

2.1 Multichannel ANC Problem
Fig.1 shows an equivalent structure of multichannel feed-
forward ANC system. The signal rrr(n) ∈ RNr detected by
Nr reference microphones are the inputs to Nc ×Nr adap-
tive feedforward controller matrix ĈCC(z,k), where Nc is the
number of the secondary loudspeakers which produce artifi-
cial sounds uuu(n) ∈ RNc to cancel the primary source noise at
the Ne objective points. The canceling errors are detected as
eee(n) ∈ RNe by the Ne error microphones. HHH(z) ∈ Z Ne×Nr

and GGG(z) ∈ Z Ne×Nc are the equivalent primary and sec-
ondary path matrices respectively. Thus the canceling error
eee(n) is expressed in terms of the accessible signals rrr(n) and
uuu(n), as

eee(n) = HHH(z)rrr(n)−GGG(z)uuu(n) (1)

where HHH(z) and GGG(z) are referred to as the equivalent pri-
mary and secondary channel matrices respectively. In the ac-
tive noise control, we cannot measure the signals ddd(n) and
yyy(n) separately, but can only measure the canceling error
eee(n), since the model of GGG(z) involves uncertainty. Thus,
the multichannel active noise control problem is how to tune
the controller CCC(z) using only accessible signals rrr(n), uuu(n)
and eee(n), even if the sound transmission matrices HHH(z) and
GGG(z) are uncertain.

2.2 Time-domain adaptive algorithm
Fig.1 shows a new direct adaptive tuning algorithm for a
multichannel ANC in time-domain. We introduce two kinds
of virtual error vectors eeeA(n) and eeeB(n), which are forced
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Figure 1: Time-domain algorithm for multichannel ANC

to zero by using three adaptive FIR matrix filters ĈCC(z,n),
K̂KK(z,n) and D̂DD(z,n). Thus we can give the expression of the
virtual errors as:

eeeA(n) = eee(n)+ K̂KK(z,n)uuu(n)− D̂DD(z,n)rrr(n) (2)

eeeB(n) = D̂DD(z,n)rrr(n)− [vec[ĈCC(z,n)]XXX(n)]T (3)

where uuu(n) = ĈCC(z,n)rrr(n), XXX(n) = K̂KK
T
(z,n)⊗rrr(n) and vec[AAA]

denotes a row vector expansion of a matrix AAA, and ⊗ denotes
the Kronecker product.

Then we consider the sum of two virtual errors in Fig.1
from (2) and (3) as

eeeA(n)+ eeeB(n) = eee(n)+ K̂KK(z,n)uuu(n)− [vec[ĈCC(z,n)]XXX(n)]T

If the coefficient parameters in the three adaptive FIR filters
ĈCC(z,n), K̂KK(z,n) and D̂DD(z,n) can be updated so that the error
vectors eeeA(n) and eeeB(n) may become zero, and the filter pa-
rameters converge to any constant values, we can show that
the canceling error eee(n) can also converge to zero. It can be
verified by proving that

K̂KK(z,n)ĈCC(z,n)rrr(n) = [vec[ĈCC(z,n)]K̂KK
T
(z,n)⊗ rrr(n)]T (4)

in sufficiently large n. If the parameters in the all adaptive
filters converge to constants, we can exchange the product of
two polynomials Ĉi j(z) and K̂mi(z) in (4), and then we can
establish that eeeA(n)+eeeB(n) = eee(n) in sufficiently large time.
Thus, we can assure the convergence of eee(n) to zero through
the convergence of eeeA(n) and eeeB(n) to zero.

2.3 Adaptation for Time-domain technique

We express the three adaptive filters ĈCC(z,n), K̂KK(z,n) and
D̂DD(z,n) as:

Ĉi j(z,n) = ĉ(1)
i j (n)z−1 + ĉ(2)

i j (n)z−2 + · · ·+ ĉ
(LC

i j)
i j (n)z−LC

i j

K̂mi(z,n) = k̂(1)
mi (n)z−1 + k̂(2)

mi (n)z−2 + · · ·+ k̂(LK
mi)

mi (n)z−LK
mi

D̂m j(z,n) = d̂(1)
m j (n)z−1 + d̂(2)

m j (n)z−2 + · · ·+ d̂
(LD

m j)
m j (n)z−LD

m j

where i = 1, · · · ,Nc, j = 1, · · · ,Nr, and m = 1, · · · ,Ne.
It follows from Fig.1 that the first virtual error vector eeeA

is expressed by:

eA,m(n) = em(n)+ ΣNc
i=1K̂mi(z,n)ui(n)−ΣNr

j=1D̂m j(z,n)r j(n)

= em(n)+ ΣNc
i=1ω̂ωωT

mi(n)θ̂θθK,mi(n)−ΣNr
i=1ξ̂ξξ

T
m j(n)θ̂θθD,m j(n)

where ωmi(n) = [ui(n − 1), · · · ,ui(n − LK
mi)]

T , ξξξ m j(n) =

[r j(n−1), · · · ,r j(n−LD
mi)]

T , θ̂θθ K,mi(n) = [k̂(1)
mi (n), · · · ,

k̂
(L(K)

mi )
mi (n)]T , and θ̂θθ D,m j(n) = [d̂(1)

m j (n), · · · , d̂(L(D)
m j )

m j (n)]T .

Then from the minimization of the instantaneous squared
error norm ||eeeA(n)||2 with respect to θ̂θθ K,mi(n) and θ̂θθ D,m j(n),
we can derive the adaptive algorithm for updating these pa-
rameters as follows:

θ̂θθ K,mi(n +1) = θ̂θθ K,mi(n)− γ(n)ωωωmi(n)eA,m(n) (5)

θ̂θθ D,m j(n +1) = θ̂θθD,m j(n)+ γ(n)ξξξ m j(n)eA,m(n) (6)

γ(n) =
2α||eeeA(n)||2

ρ + ΣNe
m=1e2

A,m(n)(||ωωωm(n)||2 + ||ξξξ m(n)||2)

where ωωωm(n) = [ωωωT
m1(n), · · · ,ωωωT

mNc
(n)]T ,ξξξ m(n) = [ξξξ T

m1(n),
· · · ,ξξξ T

mNr
(n)]T , and 0 < α < 1,ρ > 0 is a small constant. The

algorithm (5) and (6) have a feature that the step size is not
constant but is adjusted by the error vector eeeA(n).

On the other hand, the second virtual error is given by:

eB,m(n) = ΣNr
j=1D̂DDm j(z,n)r j(n)

−[ĈCC11(z,n), · · · ,ĈCCNcNr(z,n)] · [xm11(n), · · · ,xmNcNr(n)]T

= ΣNr
j=1D̂DDm j(z,n)r j(n)

−(xxxT
m11(n), · · · ,xxxT

mNcNr(n)) · [ĉcc11(n), · · · , ĉccNcNr(n)]T

= ΣNr
j=1D̂DDm j(z,n)r j(n)−φφφ T

X ,m(n)θ̂θθC(n)

where xxxmi j(n) = [xmi j(n−1), · · · ,xmi j(n−LC
i j)]

T , ĉcci j(n) =

[ĉ(1)
i j (n), · · · , ĉ(LC

i j)
i j (n)]T , θ̂θθC = [ĉccT

11(n), · · · , ĉccT
1Nr

, · · · ,
ĉccT

NcNr
(n)]T , φφφ T

X ,m(n) = [xxxT
m11(n), · · · ,xxxT

m1Nr
, · · · ,xxxT

mNcNr
(n)].

Thus, the second virtual error vectors are expressed by:

eeeB(n) = D̂DD(z,n)rrr(n)−ΦΦΦT
X(n)θ̂θθC(n)

where ΦΦΦX (n) ≡ [φφφX ,1(n),φφφ X ,2(n), · · · ,φφφX ,Ne
(n)]. Then, we

can give the adaptive algorithm for updating the parameters
in ĈCC(z,n) as follows:

θ̂θθC(n + 1) = θ̂θθC(n)+ γc(n)ΦΦΦX (n)eeeB(n) (7)

γc(n) =
2α||eeeB(n)||2

ρc + ||ΦΦΦX (n)eee(n)||2

where 0 < αc < 1, and ρ > 0 is a small constant.
Then by updating the old parameters of θ̂θθC(n) and θ̂θθ K(n)

in ADF#1′ and ADF#2′ in Fig.1 by the new adjusted param-
eters in (5), (6) and (7), we can generate the control inputs
uuu(n) and the auxiliary signals XXX(n).

3. FREQUENCY-DOMAIN IMPLEMENTATION

3.1 Expression of two virtual error vectors
Fig.2 shows a new fully adaptive tuning algorithm in the
frequency-domain for a multichannel ANC. We introduce
two kinds of virtual error vectors eeeA(k) and eeeB(k), which are
forced to zero by using three frequency-domain adaptive FIR
filter matrices C̃CC(k), K̃KK(k), and D̃DD(k).
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Figure 2: Freq.-domain algorithm for multichannel ANC

Let k refer to the block index, which is related to the orig-
inal sample time n as: n = kM + s, s = 0,1, · · · ,M −1, k =
1,2, · · · , where M is the block length.

The reference data which is detected in j-th reference mi-
crophone for block k is thus defined by the set {rrr j(kM +
s)}M−1

s=0 , which is written in a vector form as follows:

rrr j(k) = [r j(kM),r j(kM + 1) · · · ,r j(kM + M−1)]T

The j-th frequency-domain reference vector RRR j(k) of size
N = 2M are calculated applying FFT’s on the corresponding
time-domain vectors as

RRRj(k) = diag{FFT [rrr j(k−1)T ,rrr j(k)T ]}
Correspondingly, we have introduced three adaptive filter
c̃cci j(k),k̃kkmi(k), and d̃ddm j(k) as follows:

c̃cci j(k) = [c̃(0)
i j (k), c̃(1)

i j (k), · · · , c̃(N−1)
i j (k)]

k̃kkmi(k) = [k̃(0)
mi (k), k̃(1)

mi (k), · · · , k̃(N−1)
mi (k)]

d̃ddm j(k) = [d̃(0)
m j (k), d̃

(1)
m j (k), · · · , d̃(N−1)

m j (k)]

where i = 1, · · · ,Nc, j = 1, · · · ,Nr, and m = 1, · · · ,Ne.
Then, the i-th frequency-domain control input UUUi(k) as:

UUUi(k) = diag{ΣNr
j=1c̃cci j(k)RRR j(k)}

The auxiliary signal matrix XXX(k) is composed by the Kro-
necker product of k̃kkmi(k) and RRR j(k) as follows:

XXXm(k) = [diag{k̃kkm1(k)RRR1(k)}, · · · ,diag{k̃kkmNc(k)RRRNr (k)}]T
XXX(k) = [XXX1(k),XXX2(k), · · · ,XXXNe(k)]

Next, VVV K(k) and VVVC(k) are defined as:

VVV K(k) = K̃KK(k)UUU(k), VVVC(k) = {[vec(C̃CC(k))]XXX(k)}T

Thus, the m-th auxiliary signals of the f -th frequency bin at
the k-th iteration respectively are written as

v( f )
K,m(k) = ΣNc

i=1ΣNr
j=1k̃( f )

mi (k)c̃( f )
i j (k)R( f )

j (k) (8)

v( f )
C,m(k) = ΣNc

i=1ΣNr
j=1c̃( f )

i j (k)k̃( f )
mi (k)R( f )

j (k) (9)

where k̃( f )
mi (k), c̃( f )

i j (k), R( f )
j (k) are the weight of the each f -th

frequency bin respectively. Since they are scalar values, we

can exchange the product of two k̃kkmi(k) and c̃cci j(k), and then
we can establish that vvvK,m(k) = vvvC,m(k) from (8) and (9).

The canceling error em(n) detected in m-th error micro-
phone is expressed by

em(kM + t) = dm(kM + t)−ym(kM + t), t = 0,1. · · · ,M−1

And the m-th virtual error vectors are expressed by:

eeeA,m(k) = eeem(k)+{vvvK,m(k)− vvvD,m(k)}last (10)
eeeB,m(k) = {vvvD,m(k)− vvvC,m(k)}last (11)

where {AAA}last denotes last M elements of IFFT {AAA}.
Then we consider the sum of two virtual errors in Fig.2

from (8)∼(11) as

eeeA,m(k)+ eeeB,m(k) = eeem(k)+{vvvK,m(k)− vvvC,m(k)}last = eeem(k)

If the coefficient parameters in the three adaptive filters C̃CC(k),
K̃KK(k), and D̃DD(k) so that the errors eeeA(k) and eeeB(k) may be-
come zero, the canceling error vector eee(k) can also converge
to zero.

3.2 Adaptation for frequency-domain technique
First, we can transform the first error vector eeeA,m(k) into
EEEA,m(k) expressed in frequency-domain using the FFT.

EEEA,m(k) = FFT [ 000 eeeA,m(k) ]

where 000 is an M-by-1 null vector. Then, the power spectral
density of the two reference signals for K̃KK(k) and D̃DD(k) in the
f -th frequency bin at the k-th iteration are expressed each as

S̃( f )
K,uu(k) = γ S̃( f )

K,uu(k−1)+(1− γ){ΣNc
i=1|U ( f )

i (k)|2}
S̃( f )

D,rr(k) = γ S̃( f )
D,rr(k−1)+ (1− γ){ΣNr

j=1|R( f )
j (k)|2}

where f = 0, · · · ,N − 1 and γ is forgetting factor. Thus, the
f -th convergence coefficients are expressed by

α̃( f )
K (k) = αK [S̃( f )

K,uu(k)]
−1

, α̃( f )
D (k) = αD[S̃( f)

D,rr(k)]
−1

where αK and αD are the constant convergence coefficients.
Therefore, the modifications of the frequency-domain algo-
rithm can be written as

k̃( f )
mi (k + 1) = k̃( f )

mi (k)−{α̃( f )
K (k)U ( f )

i
H
(k)E( f )

A,m(k)} f irst

d̃( f )
m j (k + 1) = d̃( f )

m j (k)+{α̃( f)
D (k)R( f )

j
H
(k)E( f )

A,m(k)} f irst

where {AAA} f irst denotes first M elements of IFFT {AAA}.
Next, we can transform the second error vector eeeB,m(k)

into EEEB,m(k) expressed in frequency-domain using the FFT.

EEEB,m(k) = FFT [ 000 eeeB,m(k) ]

Then, unlike the modifications of K̃KK(k) and C̃CC(k), the power
spectral density of the reference signal for c̃cci j(k) in the f -th
frequency bin at the k-th iteration are expressed as

P̃( f )
C,i j(k) = γP̃( f )

C,i j(k−1)+(1− γ){ΣNe
m=1|X ( f )

mi j(k)|2}
QQQC,i j(k) = diag{[(P̃(0)

C,i j)
−1

(k), · · · ,(P̃(N−1)
C,i j )

−1
(k)]T }

Therefore, the modification of the frequency-domain LMS
algorithm can be written as

c̃cci j(k + 1) = c̃cci j(k)+ αCFFT
[

φφφC,i j(k) 000
]

φφφC,i j(k) = {[ΣNe
m=1EEEB,mxxxH

mi jQQQC,i j]} f irst
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4. COMPUTATIONAL COMPLEXITY

Comparison of the computational complexity is based on
the total number of multiplications involved in frequency-
domain and time-domain implementations for a block size
M. Consider first time-domain algorithm, with M tap weights
operating on real data. Here, Nc, Nr and Ne are set to
a to simplify the problem. In this case, (2a3 + 3a2)M
multiplications are performed to compute the output, and
(4a3 + 6a2)M + 4a+ 6 multiplications are performed to up-
date the tap weights. Now consider the frequency-domain
algorithm. Each N-point FFT (and IFFT) requires approxi-
mately N log2 N real multiplications, where N = 2M. There
are 6a2 + 6a frequency transformations performed in the
proposed algorithm, which therefore account for (6a2 +
6a)N log2 N multiplications. In addition, (2a3 + 3a2)N mul-
tiplications are performed to compute the output, and (5a3 +
14a2)N multiplications are performed to update. The com-
plexity ratio for the frequency-domain algorithm to time-
domain algorithm is therefore,

10a3 + 28a2 +(12a2 + 12a) log2 M
(6a3 + 9a2)M + 4a+ 6

For example, for a = 2,M = 1024, use this equation shows
that the frequency-domain algorithm is roughly 94 times
faster than the time-domain algorithm in computational
terms.

5. NUMERICAL SIMULATION

We examine the effectiveness of the multichannel frequency-
domain direct adaptive algorithm in two channel ANC in a
room. Sound reflections on the room walls are assumed to
be suppressed in a passive manner. We used the path models
that were obtained experimentally.

Fig.3 shows the simulation setup and the scenario in
which the location of the two error microphones is changed
by 34cm instantaneously near to the position of the primary
sources by using the switches at 20 s after the start of con-
trol, and then that is changed by 68cm instantaneously far
from there by using the switches at 40 s after.

Figs. 4(a) and 4(b) show the actual canceling errors e1(n)
and e2(n) in a case without control. The movement of error
microphones causes uncertain changes of the primary and
secondary path dynamics, and so the filtered-x types of al-
gorithm could not keep stable attenuation performance at the
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Figure 4: Comparison of control results

first switched time as shown in Figs.4(c) and 4(d), since it
needs precise knowledge on the channels dynamics. On the
other hand, the direct method types of both algorithms can
still attain the stable control performance even if the sec-
ondary channels change very rapidly as given in Figs.4(e)
to 4(h).

6. CONCLUSION

We have presented the new frequency-domain direct adap-
tive algorithm for tuning the feedforward inverse controller
in multichannel cases, which is effective even when the sec-
ondary path matrices are uncertain or unknown. The pro-
posed algorithms do not need explicit identification of uncer-
tain paths, and frequency-domain technique has the greatest
computational savings. The effectiveness has been validated
by numerical simulations of two-channel ANC.
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